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Abstract

This thesis introduces a way to build Markov chains out of Hopf algebras. The transition

matrix of a Hopf-power Markov chain is (the transpose of) the matrix of the coproduct-

then-product operator on a combinatorial Hopf algebra with respect to a suitable basis.

These chains describe the breaking-then-recombining of the combinatorial objects in the

Hopf algebra. The motivating example is the famous Gilbert-Shannon-Reeds model of

riffle-shuffling of a deck of cards, which arises in this manner from the shuffle algebra.

The primary reason for constructing Hopf-power Markov chains, or for rephrasing fa-

miliar chains through this lens, is that much information about them comes simply from

translating well-known facts on the underlying Hopf algebra. For example, there is an

explicit formula for the stationary distribution (Theorem 4.5.1), and constructing quotient

algebras show that certain statistics on a Hopf-power Markov chain are themselves Markov

chains (Theorem 4.7.1). Perhaps the pinnacle is Theorem 2.5.1, a collection of algorithms

for a full left and right eigenbasis in many common cases where the underlying Hopf alge-

bra is commutative or cocommutative. This arises from a cocktail of the Poincare-Birkhoff-

Witt theorem, the Cartier-Milnor-Moore theorem, Reutenauer’s structure theory of the free

Lie algebra, and Patras’s Eulerian idempotent theory.

Since Hopf-power Markov chains can exhibit very different behaviour depending on the

structure of the underlying Hopf algebra and its distinguished basis, one must restrict at-

tention to certain styles of Hopf algebras in order to obtain stronger results. This thesis will

focus respectively on a free-commutative basis, which produces "independent breaking"

chains, and a cofree basis; there will be both general statements and in-depth examples.
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Chapter 1

Introduction

Sections 1.1 and 1.2 briefly summarise, respectively, the basics of the two worlds that

this thesis bridges, namely Markov chains and Hopf algebras. Section 1.3 introduces the

motivating example of riffle-shuffling of a deck of cards, and outlines the main themes in

the thesis.

1.1 Markov chains

A friendly introduction to this topic is Part I of the textbook [LPW09].

A (discrete time) Markov chain is a simple model of the evolution of an object over

time. The key assumption is that the state Xm of the object at time m only depends on Xm−1,

its state one timestep prior, and not on earlier states. Writing P{A|B} for the probability of

the event A given the event B, this Markov property translates to

P{Xm = xm|X0 = x0,X1 = x1, . . . ,Xm−1 = xm−1}= P{Xm = xm|Xm−1 = xm−1}.

Consequently,

P{X0 = x0,X1 = x1, . . . ,Xm = xm}

=P{X0 = x0}P{X1 = x1|X0 = x0} . . .P{Xm = xm|Xm−1 = xm−1}.

1



CHAPTER 1. INTRODUCTION 2

The set of all possible values of the Xm is the state space - in this thesis, this will be a finite

set, and will be denoted S or B, as it will typically be the basis of a vector space.

All Markov chains in this thesis are time-invariant, so P{Xm = y|Xm−1 = x}= P{X1 =

y|X0 = x}. Thus a chain is completely specified by its transition matrix

K(x,y) := P{X1 = y|X0 = x}.

It is clear that K(x,y)≥ 0 for all x,y ∈ S, and ∑y∈S K(x,y) = 1 for each x ∈ S. Conversely,

any matrix K satisfying these two conditions defines a Markov chain. So this thesis will

use the term “transition matrix” for any matrix with all entries non-negative and all row

sums equal to 1. (A common equivalent term is stochastic matrix).

Note that

P{X2 = y|X0 = x}= ∑
z∈S

P{X2 = y|X1 = z}P{X1 = z|X0 = x}

= ∑
z∈S

K(z,y)K(x,z) = K2(x,y);

similarly, Km(x,y) = P{Xm = y|X0 = x} - the powers of the transition matrix contain the

transition probabilities after many steps.

Example 1.1.1. The process of card-shuffling is a Markov chain: the order of the cards

after m shuffles depends only on their order just before the last shuffle, not on the orders

prior to that. The state space is the n! possible orderings of the deck, where n is the number

of cards in the deck.

The most well-known model for card-shuffling, studied in numerous ways over the last

25 years, is due to Gilbert, Shannon and Reeds (GSR): first, cut the deck binomially (i.e.

take i cards off the top of an n-card deck with probability 2−n(n
i

)
), then drop one by one

the bottommost card from one of the two piles, chosen with probability proportional to the

current pile size. Equivalently, all interleavings of the two piles which keep cards from the

same pile in the same relative order are equally likely. This has been experimentally tested

to be an accurate model of how the average person shuffles. Section 6.1 is devoted to this

example, and contains references to the history and extensive literature.
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After many shuffles, the deck is almost equally likely to be in any order. This is a

common phenomenon for Markov chains: under mild conditions, the probability of being

in state x after m steps tends to a limit π(x) as m→ ∞. These limiting probabilities must

satisfy ∑x π(x)K(x,y) = π(y), and any probability distribution satisfying this equation is

known as a stationary distribution. With further mild assumptions (see [LPW09, Prop.

1.14]), π(x) also describes the proportion of time the chain spends in state x.

The purpose of shuffling is to put the cards into a random order, in other words, to

choose from all orderings of cards with equal probability. Similarly, Markov chains are of-

ten used as “random object generators”: thanks to the Markov property, running a Markov

chain is a computationally efficient way to sample from π . Indeed, there are schemes such

as Metropolis [LPW09, Chap. 3] for constructing Markov chains to converge to a desired

stationary distribution. For these sampling applications, it is essential to know roughly how

many steps to run the chain. The standard way to measure this rigorously is to equip the

set of probability distributions on S with a metric, such as total variation or separation

distance, and find a function m(ε) for which ||Km(x0, ·)− π(·)|| < ε . Such convergence

rate bounds are outside the scope of this thesis, which simply views this as motivation for

studying high powers of the transition matrix.

One way to investigate high powers of a matrix is through its spectral information.

Definition 1.1.2. Let {Xm} be a Markov chain on the state space S with transition matrix

K. Then

• A function g : S→ R is a left eigenfunction of the chain {Xm} of eigenvalue β if

∑x∈S g(x)K(x,y) = βg(y) for each y ∈ S.

• A function f : S→ R is a right eigenfunction of the chain {Xm} of eigenvalue β if

∑y∈S K(x,y)f(y) = β f(x) for each x ∈ S.

(It may be useful to think of g as a row vector, and f as a column vector.) Observe that

a stationary distribution π is a left eigenfunction of eigenvalue 1. [DPR14, Sec. 2.1] lists

many applications of both left and right eigenfunctions, of which two feature in this thesis.

Chapter 5 and Section 6.1 employ their Use A: the expected value of a right eigenfunction
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f with eigenvalue β is

E{f(Xm)|X0 = x0} := ∑
s∈S

Km(x0,s)f(s) = β
mf(x0).

The Proposition below records this, together with two simple corollaries.

Proposition 1.1.3 (Expectation estimates from right eigenfunctions). Let {Xm} be a

Markov chain with state space S, and fi some right eigenfunctions with eigenvalue βi.

(i) For each fi,

E{fi(Xm)|X0 = x0}= β
m
i fi(x0).

(ii) Suppose f : S→ R is such that, for each x ∈ S,

∑
i

αifi(x)≤ f(x)≤∑
i

α
′
i fi(x)

for some non-negative constants αi,α
′
i . Then

∑
i

αiβ
m
i fi(x0)≤ E{f(Xm)|X0 = x0} ≤∑

i
α
′
i β

m
i fi(x0).

(iii) Let S′ be a subset of the state space S. Suppose the right eigenfunction fi is non-

negative on S′ and zero on S\S′. Then

β m
i fi(x0)

maxs∈S′ fi(s)
≤ P{Xm ∈ S′|X0 = x0} ≤

β m
i fi(x0)

mins∈S′ fi(s)
.

Proof. Part i is immediate from the definition of right eigenfunction. Part ii follows from

the linearity of expectations. To see Part iii, specialise to f = 1S′ , the indicator function of

being in S′. Then it is true that

fi(x)
maxs∈S′ fi(s)

≤ 1S′(x)≤
fi(x)

mins∈S′ fi(s)

and the expected value of an indicator function is the probability of the associated event.
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A modification of [DPR14, Sec. 2.1, Use H] occurs in Corollary 6.2.18. Here is the

basic, original version:

Proposition 1.1.4. Let K be the transition matrix of a Markov chain {Xm}, and let {fi},
{gi} be dual bases of right and left eigenfunctions for {Xm} - that is, ∑ j fi( j)gi′( j) = 0 if

i 6= i′, and ∑ j fi( j)gi( j) = 1. Write βi for the common eigenvalue of fi and gi. Then

P{Xm = y|X0 = x}= Km(x,y) = ∑
i

β
m
i fi(x)gi(y).

Proof. Let D be the diagonal matrix of eigenvalues (so D(i, i) = βi). Put the right eigen-

functions f j as columns into a matrix F (so F(i, j) = f j(i)), and the left eigenfunctions gi

as rows into a matrix G (so G(i, j) = gi( j)). The duality means that G = F−1. So, a simple

change of coordinates gives K = FDG, hence Km = FDmG. Note that Dm is diagonal with

Dm(i, i) = β m
i . So

Km(x,y) = (FDmG)(x,y)

= ∑
i, j

F(x, i)Dm(i, j)G( j,y)

= ∑
i

F(x, i)β m
i G(i,y)

= ∑
i

β
m
i fi(x)gi(y).

For general Markov chains, computing a full basis of eigenfunctions (a.k.a. “diagonal-

ising” the chain) can be an intractable problem; this strategy is much more feasible when

the chain has some underlying algebraic or geometric structure. For example, the eigenval-

ues of a random walk on a group come directly from the representation theory of the group

[Dia88, Chap. 3E]. Similarly, there is a general formula for the eigenvalues and right

eigenfunctions of a random walk on the chambers of a hyperplane arrangement [BHR99;

Den12]. The purpose of this thesis is to carry out the equivalent analysis for Markov chains

arising from Hopf algebras.



CHAPTER 1. INTRODUCTION 6

1.2 Hopf algebras

A graded, connected Hopf algebra is a graded vector space H =
⊕

∞
n=0 Hn equipped

with two linear maps: a product m : Hi ⊗H j → Hi+ j and a coproduct ∆ : Hn →⊕n
j=0 H j⊗Hn− j. The product is associative and has a unit which spans H0. The cor-

responding requirements on the coproduct are coassociativity: (∆⊗ ι)∆ = (ι⊗∆)∆ (where

ι denotes the identity map) and the counit axiom: ∆(x)−1⊗x−x⊗1 ∈
⊕n−1

j=1 H j⊗Hn− j,

for x∈Hn. The product and coproduct satisfiy the compatibility axiom ∆(wz) = ∆(w)∆(z),

where multiplication on H ⊗H is componentwise. This condition may be more trans-

parent in Sweedler notation: writing ∑(x) x(1)⊗ x(2) for ∆(x), the axiom reads ∆(wz) =

∑(w),(z)w(1)z(1)⊗w(2)z(2). This thesis will use Sweedler notation sparingly.

The definition of a general Hopf algebra, without the grading and connectedness as-

sumptions, is slightly more complicated (it involves an extra antipode map, which is auto-

matic in the graded case); the reader may consult [Swe69]. However, that reference (like

many other introductions to Hopf algebras) concentrates on finite-dimensional Hopf alge-

bras, which are useful in representation theory as generalisations of group algebras. These

behave very differently from the infinite-dimensional Hopf algebras in this thesis.

Example 1.2.1 (Shuffle algebra). The shuffle algebra S , as a vector space, has basis the

set of all words in the letters {1,2, . . .}. Write these words in parantheses to distinguish

them from integers. The degree of a word is its number of letters, or length. The product

of two words is the sum of all their interleavings (with multiplicity), and the coproduct is

by deconcatenation; for example:

m((13)⊗ (52)) = (13)(52) = (1352)+(1532)+(1523)+(5132)+(5123)+(5213);

m((15)⊗ (52)) = (15)(52) = 2(1552)+(1525)+(5152)+(5125)+(5215);

∆((336)) = /0⊗ (336)+(3)⊗ (36)+(33)⊗ (6)+(336)⊗ /0.

(Here, /0 denotes the empty word, which is the unit of S .)

More examples of Hopf algebras are in Section 4.1. This thesis will concentrate on

Hopf algebras satisfying at least one of the following two symmetry conditions: H is
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commutative if wz = zw for all w,z ∈H , and H is cocommutative if ∑(x) x(1)⊗ x(2) =

∑(x) x(2)⊗ x(1) for all x ∈H . In other words, if τ : H ⊗H →H ⊗H is the linear

map satisfying τ(w⊗ z) = z⊗w for all w,z ∈H , then cocommutativity is the condition

τ(∆(x)) = ∆(x) for all x.

Hopf algebras first appeared in topology, where they describe the cohomology of a

topological group or loop space. Cohomology is always an algebra under cup product, and

the group product or the concatenation of loops induces the coproduct structure. Nowa-

days, the Hopf algebra is an indispensable tool in many parts of mathematics, partly due

to structure theorems regarding abstract Hopf algebras. To give a flavour, a theorem of

Hopf [Str11, Th. A49] states that any finite-dimensional, graded-commutative and graded-

cocommutative Hopf algebra over a field of characteristic 0 is isomorphic as an algebra

to a free exterior algebra with generators in odd degrees. More relevant to this thesis is

the Cartier-Milnor-Moore theorem [Car07, Th. 3.8.1]: any cocommutative and conilpotent

Hopf algebra H over a field of characteristic zero is the universal enveloping algebra of its

primitive subspace {x ∈H |∆(x) = 1⊗ x+ x⊗1}. That such a Hopf algebra is completely

governed by its primitives will be important for Theorem 2.5.1.B, one of the algorithms

diagonalising the Markov chains in this thesis.

1.3 Hopf-power Markov chains

To see the connection between the shuffle algebra and the GSR riffle-shuffle Markov chain,

identify a deck of cards with the word whose ith letter denotes the value of the ith card,

counting the cards from the top of the deck. So (316) describes a three-card deck with the

card labelled 3 on top, card 1 in the middle, and card 6 at the bottom. Then, the probability

that shuffling a deck x of n cards results in a deck y is

K(x,y) = coefficient of y in 2−nm∆(x).

In other words, the transition matrix of the riffle-shuffle Markov chain for decks of n cards

is the transpose of the matrix of the linear map 2−nm∆ with respect to the basis of words

of length n. Thus diagonalising the riffle-shuffle chain amounts to the completely algebraic
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problem of finding an eigenbasis for m∆, the coproduct-then-product operator, on the shuf-

fle algebra. Chapter 2 and Section 6.1 achieve this; although the resulting eigenfunctions

are not dual in the sense of Proposition 1.1.4, this is the first time that full eigenbases for

riffle-shuffling have been determined.

The subject of this thesis is to analogously model the breaking-then-recombining of

other combinatorial objects. As described in Section 4.1, the literature contains numerous

constructions of combinatorial Hopf algebras, which encode how to assemble and take

apart combinatorial objects. For example, in the Hopf algebras of graphs (Example 4.1.3),

the product is disjoint union, and the coproduct sends a graph to pairs of induced subgraphs

on a subset of the vertices and on its complement. Then one can product a “graph-breaking”

model by defining the transition probabilities K(x,y) to be the coefficient of y in 2−nm∆(x),

where n is the number of vertices of the graphs x and y. Then each step of the chain

chooses a subset of the vertex set and severs all edges with exactly one endpoint in the

chosen subset. Since this transition matrix is the matrix of the linear operator 2−nm∆, its

eigenfunctions again come from the eigenvectors of 2−nm∆.

The obstacle to making the same definition on other Hopf algebras is that the coeffi-

cients of 2−nm∆ need not always sum to one. Fortunately, a clean workaround exists in the

form of the Doob transform. Theorem 3.1.1 describes this very general method of building

a transition matrix out of most non-negative linear operators, by rescaling the basis.

Since the transition matrix of such a Hopf-power Markov chain is the matrix of the

coproduct-then-product operator m∆ (albeit with a rescaling of basis), many questions

about these chains can be translated from probability into algebra. As previously men-

tioned, the eigenfunctions of the chain are the eigenvectors of m∆; this applies in particular

to their stationary distributions. Reversibility of a Hopf-power Markov chain is equivalent

to self-duality of the underlying Hopf algebra (Theorem 4.6.3), and the Projection Theo-

rem (Theorem 4.7.1) explains how Markov statistics arise from certain maps between Hopf

algebras. For example, Theorem 6.2.1 constructs a Hopf-morphism which sends a deck of

distinct cards to its descent set (the positions where a card has greater value than its im-

mediate successor). Consequently, tracking the descent set under riffle-shuffling of distinct

cards is itself a Markov chain. In other words, the descent set after one shuffle only depends
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on the current descent set, not on the precise ordering of the deck, an observation originally

due to Stanley.

The Hopf-power Markov chain is a very general construction - it can exhibit various

different behaviour depending on the structure of the underlying Hopf algebra, i.e. on the

interplay of the breaking and combining rules. For example, the stationary distribution of

the edge-removal chain is concentrated at the graph with no edges, whilst riffle-shuffling

has a uniform distribution. In fact, for all combinatorial families with a “deterministic com-

bining rule”, their chains are absorbing, and there is a standard procedure for approximating

how close they are to absorption (Proposition 5.1.11).

The organisation of the thesis is as follows: Chapter 2 derives some results on the eigen-

vectors of m∆, which will be useful both in constructing and diagonalising Hopf-power

Markov chains. It does not involve any probability. Chapter 3 is independent of Chapter

2 and describes the properties of the Doob transform under very general hypotheses, with-

out reference to Hopf algebras. Chapter 4 is the centerpiece of the thesis - it contains the

construction of Hopf-power Markov chains, and the theorems regarding their stationary

distribution, reversibility, and Markov statistics. Chapter 5 opens with additional theory

for chains with a “deterministic combining rule”, then illustrates this in detail on the ex-

amples of rock-breaking and tree-pruning. Chapter 6 is devoted to the initial example of

riffle-shuffling - Section 6.1 derives a full left and right eigenbases and some associated

probability estimates, and Section 6.2 interprets the left and right eigenbases of the descent

set chain.

Remark. An earlier version of the Hopf-power Markov chain framework, restricted to free-

commutative or free state space bases, appeared in [DPR14]. Table 1.1 pairs up the results

and examples of that paper and their improvements in this thesis. (I plan to update this

table on my website, as the theory advances and more examples are available.) In addition,

a summary of Section 6.2, on the descent set Markov chain under riffle-shuffling, appeared

in [Pan13].
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[DPR14] thesis
construction 3.2 4.2,4.3

stationary distribution 3.7.1 4.5
reversibility 4.6
projection 4.7

diagonalisation
general 3.5 2

algorithm for free-commutative basis Th. 3.15 Th. 2.5.1.A
algorithm for basis of primitives Th. 2.5.1.B

algorithm for shuffle basis Th. 2.5.1.A’
algorithm for free basis Th. 3.16 Th. 2.5.1.B’

unidirectionality for free-commutative basis 3.3 5.1.2
right eigenfunctions for free-commutative basis 3.6 5.1.3

link to terminality of QSym 3.7.2 5.1.4

examples
rock-breaking 4 5.2
tree-pruning 5.3

riffle-shuffling1 5 6.1
descent sets under riffle-shuffling 6.2

Table 1.1: Corresponding sections of [DPR14] and the present thesis



Chapter 2

Diagonalisation of the Hopf-power map

This chapter collects together some results on the eigenvectors of the Hopf-power map;

these will be useful in subsequent chapters for constructing and diagonalising Hopf-power

Markov chains. These results do not require any probability, and may be of interest inde-

pendently of Hopf-power Markov chains.

Section 2.1 introduces the Hopf-power map and its dual. The next three sections

build towards Theorem 2.5.1, a set of four explicit algorithms for full eigenbases of the

Hopf-power map Ψa on a commutative or cocommutative (graded connected) Hopf al-

gebra. These allow explicit computations of left and right eigenbases of the associated

Markov chains. Each algorithm follows the same general two-step principle: first, pro-

duce the eigenvectors of smallest eigenvalue, using the Eulerian idempotent (Section 2.2),

then, combine these into eigenvectors of higher eigenvalue, following Section 2.3. Section

2.4 explains the Lyndon word terminology necessary to implement Theorems 2.5.1.A′ and

2.5.1.B′; these extended algorithms are useful when the information required for Theorems

2.5.1.A and 2.5.1.B are not readily available. Section 2.5 contains all four algorithms and

their proofs.

Section 2.6 drops the assumptions of commutativity or cocommutativity, and proves

that the eigenbases algorithms still hold, in some sense, for the highest eigenvalue. This

last result encodes the stationary distributions for any Hopf-power Markov chain (Theorem

4.5.1), and offers some explanation as to why certain bases cannot produce Markov chains

through the Doob transform (end of Section 4.3).

11
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2.1 The Hopf-power Map

The Markov chains in this thesis are built from the ath Hopf-power map Ψa : H →H ,

defined to be the a-fold coproduct followed by the a-fold product: Ψa := m[a]∆[a]. Here

∆[a] : H →H ⊗a is defined inductively by ∆[a] := (ι⊗·· ·⊗ ι⊗∆)∆[a−1], ∆[1] = ι (recall ι

denotes the identity map), and m[a] : H ⊗a→H by m[a] := m(m[a−1]⊗ ι), m[1] = ι . So the

Hopf-square is coproduct followed by product: Ψ2 := m∆. Observe that, on a graded Hopf

algebra, the Hopf-powers preserve degree: Ψa : Hn→Hn.

The Hopf-power map first appeared in [TO70] in the study of group schemes. The

notation Ψa comes from [Pat93]; [Kas00] writes [a], and [AL13] writes ι∗a, since it is the

ath convolution power of the identity map. [LMS06] denotes Ψa(x) by x[a]; they study

this operator on finite-dimensional Hopf algebras as a generalisation of group algebras.

The nomenclature “Hopf-power” comes from the fact that these operators exponentiate the

basis elements of a group algebra; in this special case, Ψa(g) = ga. Since this thesis deals

with graded, connected Hopf algebras, there will be no elements satisfying Ψa(g) = ga,

other than multiples of the unit. However, the view of Ψa as a power map is still helpful:

on commutative or cocommutative Hopf algebras, the power rule ΨaΨa′ = Ψaa′ holds.

Here is a simple proof [Kas00, Lem. 4.1.1], employing Sweedler notation:

Ψ
a′

Ψ
a(x)

=∑
(x)

Ψ
a′(x(1) . . .x(a))

=∑
[
(x(1))(1)(x(2))(1) . . .(x(a))(1)

][
(x(1))(2) . . .(x(a))(2)

]
. . .
[
(x(1))(a′) . . .(x(a))(a′)

]
=∑

[
x(1)x(a′+1) . . .x(a′(a−1)+1)

][
x(2) . . .x(a′(a−1)+2)

]
. . .
[
x(a′) . . .x(aa′)

]
=∑x(1)x(2) . . .x(aa′) = Ψ

aa′(x).

(The third equality uses coassociativity, and the fourth uses commutativity or cocommuta-

tivity.)

The Hopf-power Markov chains of this thesis arise from applying the Doob transform

to the Hopf-power map Ψa : Hn→Hn. As Theorem 3.1.1 will explain, the Doob transform
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requires a special eigenvector of the dual map to Ψa. This dual map is in fact also a Hopf-

power map, but on the dual Hopf algebra, as defined below.

Definition 2.1.1. Let H =
⊕

n≥0 Hn be a graded, connected Hopf algebra over R with

basis B = qnBn. The (graded) dual of H is H ∗ := ⊕n≥0H
∗

n , where H ∗
n is the set of

linear functionals on Hn. (This is the dual of Hn in the sense of vector spaces, as described

at the start of Chapter 3.) The product and coproduct on H ∗ are defined by

m( f ⊗g)(x) := ( f ⊗g)(∆x); ∆( f )(w⊗ z) = f (wz)

for x,z,w ∈H and f ,g ∈H ∗. (Here, ( f ⊗g)(a⊗b) = f (a)g(b).)

The symmetry of the Hopf axioms ensures that H ∗ is also a (graded, connected) Hopf

algebra. Note that, for x ∈H and f ∈H ∗,

(m[a]
∆
[a] f )(x) = (∆[a] f )(∆[a]x) = f (m[a]

∆
[a]x)

so the ath Hopf-power of H ∗
n is the dual map (in the linear algebraic sense) to the ath

Hopf-power on Hn.

Example 2.1.2. The dual of the shuffle algebra S is the free associative algebra S ∗,

whose basis is also indexed by words in the letters {1,2, . . .}. The product in S ∗ is con-

catenation, for example:

m((12)⊗ (231)) = (12231)

and the coproduct is “deshuffling”:

∆(w1 . . .wn) = ∑
S⊆{1,2,...,N}

∏
i∈S

wi⊗∏
i/∈S

wi.

For example,

∆((316)) = /0⊗ (316)+(3)⊗ (16)+(1)⊗ (36)+(6)⊗ (31)

+(31)⊗ (6)+(36)⊗ (1)+(16)⊗ (3)+(316)⊗ /0.
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Observe that the free associative algebra is noncommutative and cocommutative. In gen-

eral, the dual of a commutative algebra is cocommutative, and vice versa.

2.2 The Eulerian Idempotent

The first step in building an eigenbasis for the Hopf-power map Ψa is to use the Eulerian

idempotent map to produce eigenvectors of smallest eigenvalue. Defining this map requires

the notion of the reduced coproduct ∆̄(x) := ∆(x)−1⊗x−x⊗1. It follows from the counit

axiom that ∆̄(x) consists precisely of the terms of ∆(x) where both tensor-factors have

strictly positive degree. Define inductively the a-fold reduced coproduct: ∆̄[1] := ι , and

∆̄[a] := (ι⊗·· ·⊗ ι⊗ ∆̄)∆̄[a−1], which picks out the terms in ∆[a](x) with all a tensor-factors

having strictly positive degree. This captures the notion of breaking into a non-trivial

pieces. Note that ∆̄[2] = ∆̄.

Definition 2.2.1 (Eulerian idempotent). [Pat93, Def. 2.2] Let H be a Hopf algebra over

a field of characteristic zero which is conilpotent (i.e. for each x, there is some a with

∆̄[a]x = 0). Then the (first) Eulerian idempotent map e : H →H is given by

e(x) = ∑
r≥1

(−1)r−1

r
m[r]

∆̄
[r](x).

(Conilpotence ensures this sum is finite).

Clearly, graded Hopf algebras are conilpotent: if x ∈Hn, then ∆̄[r](x) = 0 whenever

r > n.

Patras proved that, if H is commutative or cocommutative, then the image of e is

the eigenspace for Ψa of eigenvalue a. Furthermore, if H is cocommutative, [Sch94,

Th. 9.4] shows that this image is the subspace of primitive elements of H , defined to

be {x ∈H |∆(x) = 1⊗ x+ x⊗ 1}. Note that this subspace is precisely the kernel of the

reduced coproduct map ∆̄. A brief explanation of these properties of im(e) is at the end of

this section, after an example of calculating e(x).
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Example 2.2.2. Work in the shuffle algebra S of Example 1.2.1, where the product is

interleaving and the coproduct is deconcatenation.

e((12)) = (12)− 1
2

m∆̄(12)

= (12)− 1
2
(1)(2)

= (12)− 1
2
[(12)+(21)]

=
1
2
[(12)− (21)] .

Observe that

∆̄

(
1
2
[(12)− (21)]

)
=

1
2
[(1)⊗ (2)− (2)⊗ (1)] ,

so, by commutativity, m∆̄e((12)) = 0, but ∆̄e((12)) 6= 0. Thus e((12)) is an eigenvector for

Ψa of eigenvalue a, but is not primitive.

Here is one more demonstration of the Eulerian idempotent:

e((123)) = (123)− 1
2

m∆̄(123)+
1
3

m[3]
∆̄
[3](123)

= (123)− 1
2
[(12)(3)+(1)(23)]+

1
3
(1)(2)(3)

= (123)− 1
2
[2(123)+(132)+(312)+(213)+(231)]

+
1
3
[(123)+(132)+(312)+(213)+(231)+(321)]

=
1
6
[2(123)− (132)− (312)− (213)− (231)+2(321)] .

The idea of the Eulerian idempotent came independently from Reutenauer and from

Patras: Reutenauer analysed it on the free associative algebra S ∗ (see Example 2.1.2), and

Patras derived the same properties for a general commutative or cocommutative conilpotent

algebra. They both define the Eulerian idempotent as the logarithm of the identity map in

the algebra (under convolution product) of endomorphisms of H . To obtain the explicit

formula of Definition 2.2.1 above, use the Taylor expansion of log(1+ x) with x being

ι−1, where 1 is projection to H0 (or, more generally, the counit followed by unit). From
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the familiar identity

ya = ea logy =
∞

∑
i=0

ai

i!
(logy)i

applied to the identity map, Patras concludes in his Proposition 3.2 that Ψa = ∑
∞
i=0 aiei

where the ei are his higher Eulerian idempotents, the ith convolution power of e scaled by

i!:

ei :=
1
i!

m[i](e⊗·· ·⊗ e)∆[i].

Hence the usual Eulerian idempotent e is e1. Recall from Section 2.1 that, if H is commu-

tative or cocommutative, then the power law holds: ΨaΨa′ = Ψaa′ (the left hand side is the

composition of two Hopf-powers). In terms of Eulerian idempotents, this says

∞

∑
i, j=0

aieia′ je j =
∞

∑
k=0

(aa′)kek.

Equating coefficients of aa′ then shows that the ei are orthogonal idempotents under com-

position: eiei = ei and eie j = 0 for i 6= j. Combining this knowledge with the expansion

Ψa = ∑
∞
i=0 aiei concludes that ei is the orthogonal projection of H onto the ai-eigenspace

of Ψa.

2.3 Eigenvectors of Higher Eigenvalue

As just discussed, on a commutative or cocommutative graded Hopf algebra, Patras’s

higher Eulerian idempotent maps ek are projections to the ak-eigenspaces for the ath Hopf-

power. However, this thesis chooses instead to build the ak-eigenspace out of k-tuples of

eigenvectors of eigenvalue a.

First, consider the case where H is commutative. Then, as noted in [Pat93], the power-

map Ψa is an algebra homomorphism:

Ψ
a(xy) = m[a]

∑
(x),(y)

x(1)y(1)⊗·· ·⊗ x(a)y(a)

= ∑
(x),(y)

x(1)y(1) . . .x(a)y(a) = ∑
(x),(y)

x(1) . . .x(a)y(1) . . .y(a) = Ψ
a(x)Ψa(y).
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Then it follows easily that:

Theorem 2.3.1. Work in a commutative Hopf algebra. Suppose x1,x2, . . . ,xk are eigen-

vectors of Ψa of eigenvalue a. Then x1x2 . . .xk is an eigenvector of Ψa with eigenvalue

ak.

If H is not commutative, then a strikingly similar construction holds, if one restricts

the xi to be primitive rather than simply eigenvectors of eigenvalue a. The reasoning is

completely different:

Theorem 2.3.2 (Symmetrisation Lemma). Let x1,x2, . . . ,xk be primitive elements of any

Hopf algebra, then ∑σ∈Sk
xσ(1)xσ(2) . . .xσ(k) is an eigenvector of Ψa with eigenvalue ak.

Proof. The proof is essentially a calculation. For concreteness, take a = 2. Then

m∆

(
∑

σ∈Sk

xσ(1)xσ(2) . . .xσ(k)

)

=m

(
∑

σ∈Sk

(
∆xσ(1)

)(
∆xσ(2)

)
. . .
(
∆xσ(k)

))

=m

(
∑

σ∈Sk

(
xσ(1)⊗1+1⊗ xσ(1)

)
. . .
(
xσ(k)⊗1+1⊗ xσ(k)

))

=m

(
∑

A1qA2={1,2,...,k}
∑

σ∈Sk

∏
i∈A1

xσ(i)⊗ ∏
j∈A2

xσ( j)

)
= |{(A1,A2) |A1qA2 = {1,2, . . . ,k}}| ∑

σ∈Sk

xσ(1) . . .xσ(k)

=2k
∑

σ∈Sk

xσ(1) . . .xσ(k).
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For higher a, the same argument shows that

Ψ
a

(
∑

σ∈Sk

xσ(1)xσ(2) . . .xσ(k)

)

=m[a]

(
∑

A1q···qAa={1,2,...,k}
∑

σ∈Sk

(
∏
i∈A1

xσ(i)

)
⊗·· ·⊗

(
∏
i∈Aa

xσ(i)

))
=ak

∑
σ∈Sk

xσ(1) . . .xσ(k).

2.4 Lyndon Words

The previous two sections show that, for commutative or cocommutative H , (sym-

metrised) products of images under the Eulerian idempotent map are eigenvectors of the

Hopf-power maps Ψa. A natural question follows: to which elements of H should one

apply the Eulerian idempotent map in order for this process to output a basis? One possible

answer is “the generators of H ”, in a sense which Theorems 2.5.1.A and 2.5.1.B will make

precise. Such generators can sometimes be conveniently determined, but in many cases it

is easier to first relate the combinatorial Hopf algebra to the shuffle algebra or the free asso-

ciative algebra, and then use the structure theory of these two famous algebras to pick out

the required generators. This is the main idea of Theorems 2.5.1.A′ and 2.5.1.B′ respec-

tively, and this section explains, following [Lot97, Sec. 5.1], the Lyndon word terminology

necessary for this latter step.

Definition 2.4.1 (Lyndon word). A word is Lyndon if it is lexicographically strictly smaller

than its cyclic rearrangements.

For example, (11212) is Lyndon, as it is lexicographically strictly smaller than (12121),

(21211), (12112) and (21121). The word (1212) is not Lyndon as it is equal to one of its

cyclic rearrangements. (31421) is also not Lyndon - for example, it does not begin with its

minimal letter.
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Definition 2.4.2 (Lyndon factorisation). The Lyndon factorisation u1 · · · · · uk of w is ob-

tained by taking uk to be the lexicographically smallest tail of w, then uk−1 is the lexico-

graphically smallest tail of w with uk removed, and so on. Throughout this thesis, k(w) will

always denote the number of Lyndon factors in w.

Observe that w is the concatenation of its Lyndon factors, not the product of these

factors in the sense of the shuffle algebra. Indeed, all this terminology is independent of

the product on the shuffle algebra.

[Lot97, Th. 5.1.5, Prop. 5.1.6] asserts that such ui are each Lyndon - indeed, this

is the only way to deconcatenate w into Lyndon words with u1 ≥ u2 ≥ ·· · ≥ uk in lexi-

cographic order. It follows from this uniqueness that each unordered k-tuple of Lyndon

words (possibly with repeats) is the Lyndon factorisation of precisely one word, namely

their concatenation in decreasing lexicographic order.

Example 2.4.3. Let w = (31421). The tails of w are (1), (21), (421), (1421) and (31421),

and the lexicographically smallest of these is (1). The lexicographically smallest tail of

(3142) is (142). So k(w) = 3 and the Lyndon factors of w are u1 = (3), u2 = (142) and

u3 = (1).

Definition 2.4.4 (Standard factorisation). A Lyndon word u of length greater than 1 has

standard factorisation u1 · u2, where u2 is the longest Lyndon tail of u that is not u itself,

and u1 is the corresponding head. By [Lot97, Prop. 5.1.3], the head u1 is also Lyndon.

Example 2.4.5. The Lyndon word u = (1323) has two tails which are Lyndon (and are not

u itself): (3) and (23). The longer Lyndon tail is (23), so the standard factorisation of u is

(1323) = (13 ·23)

When using Theorems 2.5.1.A′ and 2.5.1.B′ below, it will be more convenient to work

with an alphabet of combinatorial objects rather than the positive integers - all the above

notions are well-defined for “words” whose letters are drawn from any totally-ordered set.

In addition, if this set is graded, then one can assign the degree of a word to be the sum of

the degree of its letters.

Example 2.4.6. If • comes before x in an alphabet, then the word •x• has Lyndon factori-

sation •x · •, and the Lyndon word ••x has standard factorisation • ·•x. If deg(x) = 2, then
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both •x• and • • x have degree 4. Example 2.5.3 below will demonstrate the eigenvector

corresponding to •x•.

2.5 Algorithms for a Full Eigenbasis

Theorem 2.5.1 below collects together four algorithms for a full eigenbasis of the Hopf-

power Ψa. Immediately following are calculations illustrating Parts A′ and B′, before the

proofs of all four algorithms. These algorithms will be useful in Chapters 5 and 6 to com-

pute eigenfunctions of Hopf-power Markov chains.

One more ingredient is necessary to state Part A of Theorem 2.5.1: the dual Cartier-

Milnor-Moore theorem [Car07, Th. 3.8.3] states that every graded connected commutative

Hopf algebra H (over a field F of characteristic 0) is a polynomial algebra, i.e. H =

F[c1,c2, . . . ] for homogeneous elements ci. {c1,c2, . . .} is then called a free generating set

for H . (The usual Cartier-Milnor-Moore theorem, for cocommutative Hopf algebras, also

plays a role in the eigenbasis algorithms; see the proof of Part B).

Theorem 2.5.1 (Eigenbasis algorithms). In all four parts below, H =
⊕

n≥0 Hn is a

graded connected Hopf algebra over R with each Hn finite-dimensional.

(A) Suppose H is commutative, and let C be a free generating set for H . Then

{e(c1) . . .e(ck)|k ∈ N,{c1, . . . ,ck} a multiset in C } is an eigenbasis for Ψa on H ,

and the eigenvector e(c1) . . .e(ck) has eigenvalue ak. So the multiplicity of the eigen-

value ak in Hn is the coefficient of xnyk in ∏c∈C
(
1− yxdegc)−1.

(B) Suppose H is cocommutative, and let P be a basis of its primitive subspace. Then{ 1
k! ∑σ∈Sk

pσ(1) . . . pσ(k)|k ∈ N,{p1, . . . , pk} a multiset in P
}

is an eigenbasis for

Ψa on H , and the eigenvector 1
k! ∑σ∈Sk

pσ(1) . . . pσ(k) has eigenvalue ak. So the mul-

tiplicity of the eigenvalue ak in Hn is the coefficient of xnyk in ∏p∈P
(
1− yxdeg p)−1.

(A′) Suppose H is isomorphic, as a non-graded algebra only, to the shuffle algebra, and

write Pw for the image in H of the word w under this isomorphism. (So {Pw} is a

basis of H indexed by words such that PwPw′ =∑v Pv, summing over all interleavings
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v of w and w′ with multiplicity.) For each word w, define gw ∈H recursively to be:

gw := e(Pw) if w is a Lyndon word;

gw := gu1 . . .guk if w has Lyndon factorisation w = u1 · · · · ·uk.

Then {gw} is an eigenbasis for Ψa on H , and the eigenvector gw has eigen-

value ak(w), where k(w) is the number of factors in the Lyndon factorisation of

w. So the multiplicity of the eigenvalue ak in Hn is the coefficient of xnyk in

∏
w Lyndon

(
1− yxdegPw

)−1
.

(B′) Suppose H is cocommutative, and is isomorphic, as a non-graded algebra only, to

the free associative algebra R〈S1,S2, . . .〉. For each word w = w1 . . .wl , where

each wi is a letter, write Sw for Sw1 . . .Swl , so {Sw} is a free basis with

concatenation product. For each word w, define gw ∈ H recursively by:

gw := e(Sw) if w is a single letter;

gw := [gu1,gu2] := gu1gu2−gu2gu1 if w is Lyndon with standard factorisation w = u1u2;

gw :=
1
k! ∑

σ∈Sk

guσ(1) . . .guσ(k) if w has Lyndon factorisation w = u1 · · · · ·uk.

Then {gw} is an eigenbasis for Ψa on H , and the eigenvector gw has eigenvalue

ak(w), where k(w) is the number of factors in the Lyndon factorisation of w. So

the multiplicity of the eigenvalue ak in Hn is the coefficient of xnyk in

∏
w Lyndon

(
1− yxdegSw

)−1
.

Remarks.

1. The notation P and S for the bases in Parts A′ and B′ are intentionally suggestive of

dual power sums and complete noncommutative symmetric functions respectively,

see Section 6.2.

2. Part A does not imply that the map xi→ e(ci) is a Hopf-isomorphism from the poly-

nomial algebra R[x1,x2, . . . ] to any graded connected commutative Hopf algebra, as
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the e(ci) need not be primitive. This map is only a Hopf-isomorphism if the Hopf

algebra in question is cocommutative in addition to being commutative. See Section

5.3 on the tree-pruning process for a counterexample. Similarly, Part A′ does not

imply that the shuffle algebra is Hopf-isomorphic to any Hopf algebra with a shuffle

product structure via the map w→ e(Pw) for Lyndon w; even if all the e(Pi) were

primitive, ∆̄(e(P12)) might not be e(P1)⊗ e(P2). In short, the presence of a shuffle

product structure is not sufficiently restrictive on the coproduct structure to uniquely

determine the Hopf algebra.

3. In contrast, the map i → e(Si) in Part B′ does construct a (non-graded) Hopf-

isomorphism from the free associative algebra S ∗ to any cocommutative Hopf alge-

bra with a free basis. This is because the image under e of a cocommutative Hopf

algebra is primitive. In fact, the eigenvectors gw are simply the images of an eigenba-

sis for the free associative algebra S ∗ under this isomorphism. Hence the approach

of this thesis is as follows: Section 6.1.1 uses Part B′ above to generate an eigenbasis

for S ∗, and writes these, up to scaling, as

∑
w′∈Sdeg(w)

fSw (w′)w′.

(The notation fSw comes from these being the right eigenfunctions of riffle-shuffling.)

It explains a method to calculate them in terms of decreasing Lyndon hedgerows.

Thereafter, the thesis will ignore Part B′ and simply use

gw = ∑
w′

fSw (w′)e(Sw′1
) . . .e(Sw′l

)

to obtain the necessary eigenvectors in Section 6.2.5, taking advantage of the graph-

ical way to calculate fSw . Here the sum runs over all w′ containing the same letters as

w, and w′i denotes the ith letter of w′. This alternative expression differs from the gw

in Part B′ above by a scaling factor, but for the probability applications in this thesis,

this alternative scaling is actually more convenient.
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4. Each part of the Theorem closes with the generating function for the multiplicities

of each eigenvalue on subspaces of each degree. These are simple generalisations

of the generating function for partitions, since each eigenvector of eigenvalue ak

corresponds to a k-tuple (unordered, possibly with repeats) of generators (Part A),

primitives (Part B), or Lyndon words (Parts A′ and B′). See [Wil94, Th. 3.14.1].

All four generating functions hold for Hopf algebras that are multigraded - simply

replace all xs, ns and degrees by tuples, and read the formula as multi-index notation.

For example, for a bigraded commutative algebra H with free generating set C (so

Part A applies), the multiplicity of the ak-eigenspace in Hm,n is the coefficient of

xm
1 xn

2yk in ∏c∈C

(
1− yxdeg1 c

1 xdeg2 c
2

)−1
, where deg(c) = (deg1(c),deg2(c)). This idea

will be useful in Section 6.1 for the study of riffle-shuffling.

5. To analyse Markov chains, one ideally wants expressions for left and right eigen-

functions of the transition matrix that are “dual”, in the sense of Proposition 1.1.4.

For Hopf-power Markov chains, Proposition 3.2.1 below translates this goal to an

eigenbasis for the Hopf-power Ψa on H and the dual eigenbasis for Ψa on H ∗.

Thus it would be best to apply the above algorithms to H and H ∗ in such a way

that the results interact nicely. Theorem 5.1.9 achieves this when a free-commutative

basis of H is explicit, using Part A on H and Part B on H ∗.

Example 2.5.2. Theorem 2.5.1.A′ applies to the shuffle algebra, with Pw = w for each

word w. Take w = (3141), which has Lyndon factorisation (3 ·14 ·1). Then the associated

eigenvector gw, which has eigenvalue a3, is

e((3))e((14))e((1))

=(3)
[
(14)− 1

2
(1)(4)

]
(1)

=(3)
[

1
2
(14)− 1

2
(41)

]
(1)

=(3)
1
2
[(141)+2(114)−2(411)− (141)]

=(3114)+(1314)+(1134)+(1143)− (3411)− (4311)− (4131)− (4113).
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Example 2.5.3. Consider applying Theorem 2.5.1.B′ to a Hopf algebra with a free basis to

find the eigenvector corresponding to the word •x•, where • and x are letters with deg(•) =
1, deg(x) = 2, and • coming before x in “alphabetical order”. (This would, for example,

construct a right eigenfunction for the Markov chain of the descent set under riffle-shuffling

corresponding to the composition (1,2,1), if x were S(2). See Example 6.2.8.) As noted in

Example 2.4.6, the Lyndon factorisation of •x• is •x · •, so, according to Theorem 2.5.1.B′

g•x• =
1
2!

(g•xg•+g•g•x) .

The first Lyndon factor •x has standard factorisation • · x, so

g•x = g•gx−gxg• = e(•)e(x)− e(x)e(•).

As deg(•) = 1, it follows that e(•) = •. Hence

g•x• =
1
2!

((•e(x)− e(x)•)•+• (•e(x)− e(x)•))

=
1
2
(•• e(x)− e(x)••).

Alternatively, use the formulation in Remark 3 above,

g•x• = ∑
w′

fS•x•(w
′)e(Sw′1

) . . .e(Sw′l
).

summing over all words w′ whose letters are •,x,•. Thus

g•x• =
[
fS•x•(•• x)

]
e(•)e(•)e(x)+

[
fS•x•(•x•)

]
e(•)e(x)e(•)+

[
fS•x•(x••)

]
e(•)e(•)e(x)

=
[
fS•x•(•• x)

]
••e(x)+

[
fS•x•(•x•)

]
• e(x)•+

[
fS•x•(x••)

]
e(x)••.

The graphical calculation of fS•x• then shows that fS•x•(•• x) = 1, fS•x•(•x•) = 0 and fS•x•(x•
•) = 1, so this gives twice the eigenvector found before. As •x• has two Lyndon factors,

the eigenvector g•x• has eigenvalue a2.
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Proof of Theorem 2.5.1.A. As explained in Sections 2.2 and 2.3 respectively, e(ci) is an

eigenvector of Ψa with eigenvalue a, and the product of eigenvectors is again an eigen-

vector, with the product eigenvalue. Hence e(c1) . . .e(ck) is an eigenvector of eigenvalue

ak.

To deduce that {e(c1) . . .e(ck)|k ∈ N,{c1, . . . ,ck} a multiset in C } is a basis, it suf-

fices to show that the matrix changing {e(c1) . . .e(ck)|k ∈ N,{c1, . . . ,ck} a multiset in C }
to {c1 . . .ck|k ∈ N,{c1, . . . ,ck} a multiset in C } is uni-triangular, under any ordering which

refines the length k. By definition of the Eulerian idempotent map, e(ci) = ci + products.

So

e(c1) . . .e(ck) = c1 . . .ck +products of at least k+1 factors.

Expanding these products in terms of the free generating set C requires at least k+ 1

c’s in each summand.

Proof of Theorem 2.5.1.B. The Symmetrisation Lemma (Theorem 2.3.2) asserts that, if

x1, . . . ,xk are all primitive, then ∑σ∈Sk
xσ(1) . . .xσ(k) is an eigenvector of Ψa of eigenvalue

ak. That these symmetrised products give a basis follows directly from the following two

well-known theorems on the structure of Hopf algebras (recall from Section 2.2 that a

graded Hopf algebra is conilpotent because ∆̄[degx+1](x) = 0):

Theorem (Cartier-Milnor-Moore). [Car07, Th. 3.8.1] A connected, conilpotent and co-

commutative Hopf algebra H (over a field of characteristic 0) is isomorphic to U (g), the

universal enveloping algebra of a Lie algebra g, where g is the Lie algebra of primitive

elements of H .

Theorem (Poincare-Birkhoff-Witt, symmetrised version). [Kna02, Prop. 3.23]

If {x1,x2, ...} is a basis for a Lie algebra g, then the symmetrised products

∑σ∈Sk
xiσ(1)xiσ(2)...xiσ(k) , for 1≤ i1 ≤ i2 ≤ ·· · ≤ ik, form a basis for U (g).

Proof of Theorem 2.5.1.A′. Apply Theorem 2.5.1.A, the eigenbasis algorithm for commu-

tative Hopf algebras, with {Pw|w Lyndon} as the free generating set C , since [Reu93, Th.

6.1.i] asserts that the Lyndon words generate the shuffle algebra freely as a commutative

algebra.
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Proof of Theorem 2.5.1.B′. [ABT13, Prop. 22] shows that {gi|i a single letter} generates

H freely. Since each gi = e(Si) is primitive, the map i→ gi is a Hopf-isomorphism from

the free associative algebra to H . Now, by [Lot97, Th. 5.3.1], the “standard bracketing”

of Lyndon words is a basis for the primitive subspace of the free associative algebra, and

its image under this Hopf-isomorphism is precisely {gw|w Lyndon}. So applying Theorem

2.5.1.B to P = {gw|w Lyndon} gives the result.

Here is a second proof employing length-triangularity arguments similar to those in the

proof of Theorem 2.5.1.A. First observe that, if x,y are primitive, then so is [x,y] = xy−yx:

∆(xy− yx) = ∆(x)∆(y)−∆(y)∆(x)

= (1⊗ x+ x⊗1)(1⊗ y+ y⊗1)− (1⊗ y+ y⊗1)(1⊗ x+ x⊗1)

= 1⊗ xy+ y⊗ x+ x⊗ y+ xy⊗1− (1⊗ yx+ x⊗ y+ y⊗ x+ yx⊗1)

= 1⊗ xy+ xy⊗1−1⊗ yx− yx⊗1

= 1⊗ (xy− yx)+(xy− yx)⊗1.

Applying this argument recursively shows that, for Lyndon w, the vector gw as defined

in the Theorem is indeed primitive. So, by the Symmetrisation Lemma (Theorem 2.3.2),

the gw for general w, which are the symmetrised products of the primitive gw, are indeed

eigenvectors of Ψa.

To deduce that these give a basis for H , it suffices to show that the matrix changing

{gw} to the basis {s[w]} of [GR89, Th. 5.2] is uni-triangular, under any ordering which

refines the length l(w). (Recall that the length l(w) is the number of letters in w). The

{s[w]} basis is defined recursively as follows:

s[w] := Sw if w is a single letter;

s[w] := s[u1]s[u2]− s[u2]s[u1] if w is Lyndon with standard factorisation w = u1u2;

s[w] :=
1
k! ∑

σ∈Sk

s[uσ(1)] . . .s[uσ(k)] if w has Lyndon factorisation w = u1 · · · · ·uk.

(For a Lyndon word w, the expression s[w] is known as its standard bracketing.) For single-

letter words w, gw = e(w) = Sw +products, by definition of the Eulerian idempotent map.
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The recursive definition of both gw and s[w] show that

gw = s[w]+products of at least l(w)+1 factors.

As in the proof of Theorem 2.5.1.A, expressing these products in the basis {Sw} involves

words of length at least l(w)+1. It is clear from the definition of s[w] that all Su appearing

in the S-expansion of s[v] have l(u) = l(v), so all s[v] in the s-expansion of these products

have l(v)≥ l(w)+1.

2.6 Basis for the Eigenspace of Largest Eigenvalue

What are the eigenvectors and eigenvalues of the Hopf-power map Ψa on a Hopf alge-

bra that is neither commutative nor cocommutative? The power rule need not hold in this

case, so the Eulerian idempotent map may not produce eigenvectors. By the Symmetrisa-

tion Lemma (Theorem 2.3.2), the symmetrised products of k primitives are eigenvectors of

eigenvalue ak. Appealing to the Poincare-Birkhoff-Witt theorem on the universal envelop-

ing algebra of the primitives, these symmetrised products can be made linearly independent,

but, without cocommutativity, these will in general not span the eigenspace.

Recently [AL13] found the eigenvalues of Ψa and their algebraic multiplicities (i.e.

the exponents of the factors in the characteristic polynomial) by passing to gr(H ), the

associated graded Hopf algebra of H with respect to the coradical filtration. The key

to their argument is a simple linear algebra observation: the eigenvalues and algebraic

multiplicities of Ψa are the same for H as for gr(H ). By [AS05a, Prop. 1.6], gr(H ) is

commutative, so the eigenbasis algorithm in Theorem 2.5.1.A above applies. So the last

assertion of the algorithm gives the following formula:

Theorem 2.6.1. [AL13, Th. 4 and remark in same section] Let H =
⊕

n≥0 Hn be a graded

connected Hopf algebra over R, and write bi for the number of degree i elements in a free

generating set of gr(H ). In other words, bi are the numbers satisfying ∏i
(
1− xi)−bi =

∑n dimgr(H )nxn = ∑n dimHnxn. Then the algebraic multiplicity of the eigenvalue ak for

Ψa : Hn→Hn is the coefficient of xnyk in ∏i
(
1− yxi)−bi . Equivalently, this multiplicity is
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the number of ways to choose k elements, unordered and possibly with repetition, out of bi

elements in degree i, subject to the condition that their degrees sum to n.

Remarks.

1. The proof in [AL13] applies the Poincare-Birkhoff-Witt theorem to the dual of

gr(H ), instead of appealing to the eigenbasis algorithm on commutative Hopf al-

gebras.

2. Explicit calculations on FQSym, the Malvenuto-Reutenauer Hopf algebra of permu-

tations [MR95, Th. 3.3; AS05b] show that Ψa need not be diagonalisable on a non-

commutative, noncocommutative Hopf algebra - in other words, there are non-trivial

Jordan blocks.

Happily, in the special case k = n (corresponding to the largest eigenvalue), this mul-

tiplicity formula implies that the Symmetrisation Lemma indeed builds all eigenvectors of

eigenvalue an, provided H1 6= /0:

Theorem 2.6.2. Let H =
⊕

n≥0 Hn be a graded connected Hopf algebra over R. Suppose

H1 6= /0, and let B1 be a basis of H1. Then an is the largest eigenvalue of the Hopf-power

map Ψa on Hn, and the corresponding eigenspace has basis

E :=

{
∑

σ∈Sn

cσ(1) . . .cσ(n)|{c1, . . . ,cn} a multiset in B1

}
.

As Theorem 4.5.1 below shows, this identifies all stationary distributions of a Hopf-

power Markov chain.

Proof. For each monomial xnyk in the generating function ∏i
(
1− yxi)−biof Theorem 2.6.1,

it must be that k ≤ n. Hence all eigenvalues ak of Ψa on Hn necessarily have k ≤ n, and

thus an is the largest possible eigenvalue.

Next observe that, since the ci each have degree 1, they are necessarily primitive. So

∑σ∈Sn cσ(1) . . .cσ(n) is a symmetrised product of n primitives, which the Symmetrisation

Lemma (Theorem 2.3.2) asserts is an eigenvector of Ψa of eigenvalue an. Working in
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the universal enveloping algebra of H1, the Poincare-Birkhoff-Witt theorem gives linear

independence of
{

∑σ∈Sn cσ(1) . . .cσ(n)
}

across all choices of multisets {c1, . . . ,cn} ⊆B1.

To conclude that the set E of symmetrised products span the an-eigenspace, it suffices to

show that |E | is equal to the algebraic multiplicity of the eigenvalue an as specified by The-

orem 2.6.1. Clearly |E |=
(|B1|+n−1

n

)
, the number of ways to choose n unordered elements,

allowing repetition, from B1. On the other hand, the algebraic multiplicity is
(b1+n−1

n

)
,

since choosing n elements whose degrees sum to n constrains each element to have degree

1. By equating the coefficient of x in the equality ∏i
(
1− xi)−bi = ∑n dimHnxn, it is clear

that b1 = dimH1 = |B1|. So |E | is indeed the algebraic multiplicity of the eigenvalue

an.

The condition H1 6= /0 is satisfied for the vast majority of combinatorial Hopf algebras,

so this thesis will not require the analogous, clumsier, result for general H , though I

include it below for completeness. To determine the highest eigenvalue, first define the

sets D := {d > 0|Hd 6= /0}, and D ′ = {d ∈D |d 6= d1+d2 with d1,d2 ∈D}. In the familiar

case where D = {1,2,3, . . .}, the set D ′ is {1}. It is possible to build Hopf algebras with

D being any additively-closed set - for example, take a free associative algebra with a

generator in degree d for each d ∈D , and let all these generators be primitive. The reason

for considering D ′ is that
⊕

d∈D ′Hd consists solely of primitives: for x ∈Hd , the counit

axiom mandates that ∆̄(x) ∈
⊕

d1+d2=d Hd1⊗Hd2 , and this direct sum is empty if d ∈D ′.

However, there may well be primitives in higher degrees.

For a fixed degree n ∈ D , define a D ′-partition of n to be an unordered tuple λ :=

(λ1, . . . ,λl(λ )) such that each λi ∈ D ′ and λ1 + · · ·+ λl(λ ) = n. The parts λi need not be

distinct. Then l(λ ) is the length of λ . (The analogous notion of a D-partition will be useful

in the proof of Theorem 2.6.4.)

Example 2.6.3. Suppose D = {5,6,7,9,10,11, . . .} = N\{1,2,3,4,8}, so

D ′ = {5,6,7,9}. There are four D ′-partitions of 23: (6,6,6,5), (7,6,5,5), (9,7,7),

(9,9,5). These have length 4,4,3,3 respectively.

Theorem 2.6.4. Let H =
⊕

n∈D Hn be a graded connected Hopf algebra over R. Then

the highest eigenvalue of the Hopf-power map Ψa on Hn is aK(n), where K(n) denotes the
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maximal length of a D ′-partition of n. A basis for the corresponding eigenspace is

E :=

{
∑

σ∈SK

cσ(1) . . .cσ(K)|{c1, . . . ,cK} a multiset in B with degc1 + · · ·+degcK = n

}
.

More explicitly, for each D ′-partition λ of n of the maximal length K, set

Eλ :=

{
∑

σ∈SK

cσ(1) . . .cσ(K)

∣∣∣∣∣ {c1, . . . ,cm1} a multiset in B1,

{cm1+1, . . . ,cm1+m2} a multiset in B2, . . .

}
,

where mi is the number of parts of size i in λ . Then E = qEλ , over all D ′-partitions λ of

n having length K.

Example 2.6.5. Continue from Example 2.6.3. In degree 23, the highest eigenvalue of Ψa

is a4, and its corresponding eigenspace has basis E(6,6,6,5)qE(7,6,5,5), where

E(6,6,6,5) :=

{
∑

σ∈S4

cσ(1)cσ(2)cσ(3)cσ(4)

∣∣∣∣∣ c1 ∈B5,

{c2,c3,c4} a multiset in B6

}
,

E(7,6,5,5) :=

{
∑

σ∈S4

cσ(1)cσ(2)cσ(3)cσ(4)

∣∣∣∣∣ {c1,c2} a multiset in B5,

c3 ∈B6,c4 ∈B7

}
.

Proof. The argument below is essentially a more careful version of the proof of Theorem

2.6.2.

By Theorem 2.6.1, ak is an eigenvalue of Ψa : Hn →Hn if and only if there are k

elements in H whose degrees sum to n. In other words, ak is an eigenvalue precisely when

there is a D-partition of n of length k. Note that a D-partition of n with maximal length

must be a D ′-partition: if a part λi of λ is not in D ′, then λi = d1 + d2 with d1,d2 ∈ D ,

and replacing λi with two parts d1,d2 in λ creates a longer partition. Hence the largest

eigenvalue of Ψa : Hn→Hn corresponds to the maximal length of a D ′-partition of n.

As observed earlier, every element of
⊕

d∈D ′Hd is primitive, by degree considerations.

So each element in E is a symmetrised product of K primitives; by the Symmetrisation

Lemma (Theorem 2.3.2), they are eigenvectors of Ψa of eigenvalue aK . As before, applying
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the Poincare-Birkhoff-Witt theorem to the universal enveloping algebra of
⊕

d∈D ′Hd gives

linear independence of E .

It remains to show that E spans the aK-eigenspace. The dimension-counting argument

which closes the proof of Theorem 2.6.2 will function, so long as bi = |Bi| for each i ∈D ′.

Recall that bi is defined by ∏i
(
1− xi)−bi = ∑d∈D |Bd|xd . Equating coefficients of xd for

d 6∈D shows that bd = 0 for d 6∈D , so the left hand side is ∏i∈D
(
1− xi)−bi . Now, for each

i ∈ D ′, there is no d1,d2 ∈ D with i = d1 +d2, so the coefficient of xi in ∏i∈D
(
1− xi)−bi

is bi.



Chapter 3

Markov chains from linear operators

As outlined previously in Section 1.3, one advantage of relating riffle-shuffling to the Hopf-

square map on the shuffle algebra is that Hopf algebra theory supplies the eigenvalues and

eigenvectors of the transition matrix. Such a philosophy applies whenever the transition

matrix is the matrix of a linear operator. Although this thesis treats solely the case where

this operator is the Hopf-power, some arguments are cleaner in the more general setting,

as presented in this chapter. The majority of these results have appeared in the literature

under various guises.

Section 3.1 explains how the Doob transform normalises a linear operator to obtain a

transition matrix. Then Sections 3.2, 3.3, 3.4 connect the eigenbasis, stationary distribution

and time-reversal, and projection of this class of chains respectively to properties of its

originating linear map.

A few pieces of notation: in this chapter, all vector spaces are finite-dimensional over

R. For a linear map θ : V →W , and bases B,B′ of V,W respectively, [θ ]B,B′ will denote

the matrix of θ with respect to B and B′. In other words, the entries of [θ ]B,B′ satisfy

θ(v) = ∑
w∈B′

[θ ]B,B′ (w,v)w

for each v ∈ B. When V = W and B = B′, shorten this to [θ ]B. The transpose of a

matrix A is given by AT (x,y) := A(y,x). The dual vector space to V , written V ∗, is the set

of linear functions from V to R. If B is a basis for V , then the natural basis to use for

32
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V ∗ is B∗ := {x∗|x ∈B}, where x∗ satisfies x∗(x) = 1, x∗(y) = 0 for all y ∈B, y 6= x. In

other words, x∗ is the linear extension of the indicator function on x. When elements of

V are expressed as column vectors, it is often convenient to view these functions as row

vectors, so that evaluation on an element of V is given by matrix multiplication. The dual

map to θ : V →W is the linear map θ ∗ : W ∗→V ∗ satisfying (θ ∗ f )(v) = f (θv). Note that

[θ ∗]B′∗,B∗ = [θ ]TB,B′ .

3.1 Construction

The starting point is as follows: V is a vector space with basis B, and Ψ : V →V is a linear

map. Suppose the candidate transition matrix K := [Ψ]TB has all entries non-negative, but

its rows do not necessarily sum to 1.

One common way to resolve this is to divide each entry of K by the sum of the entries

in its row. This is not ideal for the present situation since the outcome is no longer a matrix

for Ψ. For example, an eigenbasis of Ψ will not give the eigenfunctions of the resulting

matrix.

A better solution comes in the form of Doob’s h-transform. This is usually applied to a

transition matrix with the row and column corresponding to an absorbing state removed, to

obtain the transition matrix of the chain conditioned on non-absorption. Hence some of the

references listed in Theorem 3.1.1 below assume that K is sub-Markovian (i.e. ∑y K(x,y)<

1), but, as the calculation in the proof shows, that is unnecessary.

The Doob transform works in great generality, for continuous-time Markov chains on

general state spaces. In the present discrete case, it relies on an eigenvector η of the dual

map Ψ∗, that takes only positive values on the basis B. Without imposing additional con-

straints on Ψ (which will somewhat undesirably limit the scope of this theory), the existence

of such an eigenvector η is not guaranteed. Even when η exists, it may not be unique in

any reasonable sense, and different choices of η will in general lead to different Markov

chains. However, when Ψ is a Hopf-power map, there is a preferred choice of η , given by

Definition 4.3.1. Hence this thesis will suppress the dependence of this construction on the

eigenvector η .
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Theorem 3.1.1 (Doob h-transform for non-negative linear maps). [Gan59, Sec. XIII.6.1;

KSK66, Def. 8.11, 8.12; Zho08, Lemma 4.4.1.1; LPW09, Sec.17.6.1; Swa12, Lem. 2.7]

Let V be a vector space with basis B, and Ψ : V →V be a non-zero linear map for which

K := [Ψ]TB has all entries non-negative. Suppose there is an eigenvector η of the dual map

Ψ∗ taking only positive values on B, and let β be the corresponding eigenvalue. Then

Ǩ(x,y) :=
1
β

K(x,y)
η(y)
η(x)

defines a transition matrix. Equivalently, Ǩ :=
[

Ψ

β

]T

B̌
, where B̌ :=

{
x̌ := x

η(x) |x ∈B
}

.

Call the resulting chain a Ψ-Markov chain on B (neglecting the dependence on its

rescaling function η as discussed previously). See Example 4.3.6 for a numerical illustra-

tion of this construction.

Proof. First note that K := [Ψ∗]B∗ , so Ψ∗η = βη translates to ∑y K(x,y)η(y) = βη(x).

(Functions satisfying this latter condition are called harmonic, hence the name h-

transform.) Since η(y) > 0 for all y, K(x,y) ≥ 0 for all x,y and K(x,y) > 0 for some

x,y, the eigenvalue β must be positive. So Ǩ(x,y)≥ 0. It remains to show that the rows of

Ǩ sum to 1:

∑
y

Ǩ(x,y) =
∑y K(x,y)η(y)

βη(x)
=

βη(x)
βη(x)

= 1.

Remarks.

1. β , the eigenvalue of η , is necessarily the largest eigenvalue of Ψ. Here’s the reason:

by the Perron-Frobenius theorem for non-negative matrices [Gan59, Ch. XIII Th. 3],

there is an eigenvector ξ of Ψ, with largest eigenvalue βmax, whose components are

all non-negative. As η has all components positive, the matrix product ηT ξ results

in a positive number. But βηT ξ = (Ψ∗η)T ξ = ηT (Ψξ ) = βmaxηT ξ , so β = βmax.



CHAPTER 3. MARKOV CHAINS FROM LINEAR OPERATORS 35

2. Rescaling the basis B does not change the chain: suppose B′ = {x′ := αxx|x ∈B}
for some non-zero constants αx. Then, since η is a linear function,

x̌′ :=
x′

η(x′)
=

αxx
αxη(x)

= x̌.

Hence the transition matrix for both chains is the transpose of the matrix of Ψ with

respect to the same basis. This is used in Theorem 3.3.3 to give a condition under

which the chain is reversible.

3. In the same vein, if η ′ is a multiple of η , then both eigenvectors η ′ and η give rise to

the same Ψ-Markov chain, since the transition matrix depends only on the ratio η(y)
η(x) .

3.2 Diagonalisation

Recall that the main reason for defining the transition matrix Ǩ to be the transpose of

a matrix for some linear operator Ψ is that it reduces the diagonalisation of the Markov

chain to identifying the eigenvectors of Ψ and its dual Ψ∗. Proposition 3.2.1 below records

precisely the relationship between the left and right eigenfunctions of the Markov chain

and these eigenvectors; it is immediate from the definition of Ǩ above.

Proposition 3.2.1 (Eigenfunctions of Ψ-Markov chains). [Zho08, Lemma 4.4.1.4; Swa12,

Lem. 2.11] Let V be a vector space with basis B, and Ψ : V → V be a linear operator

allowing the construction of a Ψ-Markov chain (whose transition matrix is Ǩ :=
[

Ψ

β

]T

B̌
,

where B̌ :=
{

x̌ := x
η(x) |x ∈B

}
). Then:

(L) Given a function g : B→ R, define a vector g ∈V by

g := ∑
x∈B

g(x)
η(x)

x.

Then g is a left eigenfunction, of eigenvalue β ′, for this Ψ-Markov chain if and only

if g is an eigenvector, of eigenvalue ββ ′, of Ψ. Consequently, given a basis {gi} of V
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with Ψgi = βigi, the set of functions

{gi(x) := coefficient of x in η(x)gi}

is a basis of left eigenfunctions for the Ψ-Markov chain, with ∑x Ǩ(x,y)g(x) = βi
β

g(y)
for all y.

(R) Given a function f : B→ R, define a vector f in the dual space V ∗ by

f := ∑
x∈B

f(x)η(x)x∗.

Then f is a right eigenfunction, of eigenvalue β ′, for this Ψ-Markov chain if and only

if f is an eigenvector, of eigenvalue ββ ′, of the dual map Ψ∗. Consequently, given a

basis { fi} of V ∗ with Ψ∗ fi = βi fi, the set of functions{
fi(x) :=

1
η(x)

fi(x)
}

is a basis of right eigenfunctions for the Ψ-Markov chain, with ∑x Ǩ(x,y)f(y)= βi
β

f(x)
for all x.

Remark. In the Markov chain literature, the term “left eigenvector” is often used inter-

changeably with “left eigenfunction”, but this thesis will be careful to make a distinction

between the eigenfunction g : B→ R and the corresponding eigenvector g ∈V (and simi-

larly for right eigenfunctions).

3.3 Stationarity and Reversibility

Recall from Section 1.1 that, for a Markov chain with transition matrix K, a stationary

distribution π(x) is one which satisfies ∑x π(x)K(x,y) = π(y), or, if written as a row vector,

πK = π . So it is a left eigenfunction of eigenvalue 1. These are of interest as they include

all possible limiting distributions of the chain. The following Proposition is essentially a

specialisation of Proposition 3.2.1.L to the case β ′ = 1:
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Proposition 3.3.1 (Stationary Distributions of Ψ-Markov chains). [Zho08, Lemma 4.4.1.2;

Swa12, Lem. 2.16] Work in the setup of Theorem 3.1.1. The stationary distributions π of a

Ψ-Markov chain are in bijection with the eigenvectors ξ = ∑x∈B ξxx of the linear map Ψ

of eigenvalue β , which have ξx ≥ 0 for all x ∈B, and are scaled so η(ξ ) = ∑x η(x)ξx = 1.

The bijection is given by π(x) = η(x)ξx.

Observe that a stationary distribution always exists: as remarked after Theorem 3.1.1, β

is the largest eigenvalue of Ψ, and the Perron-Frobenius theorem guarantees a correspond-

ing eigenvector with all entries non-negative. Rescaling this then gives a ξ satisfying the

conditions of the Proposition.

For the rest of this section, assume that β has multiplicity 1 as an eigenvalue of Ψ, so

there is a unique stationary distribution π and corresponding eigenvector ξ of the linear

map Ψ. (Indeed, Proposition 3.3.1 above asserts that β having multiplicity 1 is also the

necessary condition.) Assume in addition that π(x)> 0 for all x∈B. Then, there is a well-

defined notion of the Markov chain run backwards; that is, one can construct a stochastic

process {X∗m} for which

P{X∗0 = xi,X∗1 = xi−1, . . . ,X∗i = x0}= P{X0 = x0,X1 = x1, . . . ,Xi = xi}

for every i. As [LPW09, Sec. 1.6] explains, if the original Markov chain started in station-

arity (i.e. P(X0 = x) = π(x)), then this reversed process is also a Markov chain - the formal

time-reversal chain - with transition matrix

K∗(x,y) =
π(y)
π(x)

K(y,x).

Theorem 3.3.2 below shows that, if the forward chain is built from a linear map via the

Doob transform, then its time-reversal corresponds to the dual map.

Theorem 3.3.2 (Time-reversal of a Ψ-Markov chain). Work in the framework of Theorem

3.1.1. If the time-reversal of a Ψ-Markov chain is defined, then it arises from applying the

Doob transform to the linear-algebraic-dual map Ψ∗ : V ∗ → V ∗ with respect to the dual

basis B∗.
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Proof. Let K∗ denote the transpose of the matrix of Ψ∗ with respect to the basis B∗. Then

K∗(x∗,y∗) = K(y,x). By definition, the transition matrix of a Ψ∗-Markov chain is

Ǩ∗(x∗,y∗) =
K∗(x∗,y∗)

β ∗
η∗(y∗)
η∗(x∗)

,

where η∗ is an eigenvector of the dual map to Ψ∗ with η∗(x∗)> 0 for all x∗ ∈B∗, and β ∗

is its eigenvalue. Identify the dual map to Ψ∗ with Ψ; then ξ is such an eigenvector, since

the condition π(x)> 0 for the existence of a time-reversal is equivalent to ξ (x∗) = ξx > 0.

Then β ∗ = β , so

Ǩ∗(x∗,y∗) =
K∗(x∗,y∗)

β

ξy

ξx

=
K(y,x)

β

ξyη(y)
ξxη(x)

η(x)
η(y)

=
π(y)
π(x)

K(y,x)
β

η(x)
η(y)

=
π(y)
π(x)

Ǩ(y,x).

Remark. This time-reversed chain is in fact the only possible Ψ∗-Markov chain on B∗; all

possible rescaling functions η∗ give rise to the same chain. Here is the reason: as remarked

after Theorem 3.1.1, a consequence of the Perron-Frobenius theorem is that all eigenvectors

with all coefficients positive must correspond to the largest eigenvalue. Here, the existence

of a time-reversal constrains this eigenvalue to have multiplicity 1, so any other choice of

η∗ must be a multiple of ξ , hence defining the same Ψ∗-Markov chain on B∗.

Markov chains that are reversible, that is, equal to their own time-reversal, are particu-

larly appealing as they admit more tools of analysis. It is immediate from the definition of

the time-reversal that the necessary and sufficient conditions for reversibility are π(x)> 0

for all x in the state space, and the detailed balance equation π(x)K(x,y) = π(y)K(y,x).

Thanks to Theorem 3.3.2, a Ψ-Markov chain is reversible if and only if [Ψ]B = [Ψ∗]B∗ . As

the right hand side is [Ψ]TB, this equality is equivalent to [Ψ]B being a symmetric matrix.

A less coordinate-dependent rephrasing is that Ψ is self-adjoint with respect to some inner
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product where the basis B is orthonormal. Actually, it suffices to require that the vectors

in B are pairwise orthogonal; the length of the vectors are unimportant since, as remarked

after Theorem 3.1.1, all rescalings of a basis define the same chain. To summarise:

Theorem 3.3.3. Let V be a vector space with an inner product, and B a basis of V con-

sisting of pairwise orthogonal vectors. Suppose Ψ : V → V is a self-adjoint linear map

admitting the construction of a Ψ-Markov chain on B, and that this chain has a unique

stationary distribution, which happens to take only positive values. Then this chain is re-

versible.

3.4 Projection

Sometimes, one is interested only in one particular feature of a Markov chain. A classic

example from [ADS11] is shuffling cards for a game of Black-Jack, where the suits of the

cards are irrelevant. In the same paper, they also study the position of the ace of spades.

In situations like these, it makes sense to study the projected process {θ(Xm)} for some

function θ on the state space, rather than the original chain {Xm}. Since θ effectively

merges several states into one, the process {θ(Xm)} is also known as the lumping of {Xm}
under θ .

Since the projection {θ(Xm)} is entirely governed by {Xm}, information about {θ(Xm)}
can shed some light on the behaviour of {Xm}. For example, the convergence rate of

{θ(Xm)} is a lower bound for the convergence rate of {Xm}. So, when {Xm} is too com-

plicated to analyse, one may hope that some {θ(Xm)} is more tractable - after all, its state

space is smaller. For chains on algebraic structures, quotient structures often provide good

examples of projections. For instance, if {Xm} is a random walk on a group, then θ can

be a group homomorphism. Section 4.7 will show that the same applies to Hopf-power

Markov chains.

In the ideal scenario, the projection {θ(Xm)} is itself a Markov chain also. As explained

in [KS60, Sec. 6.3], {θ(Xm)} is a Markov chain for any starting distribution if and only if

the sum of probabilities ∑y:θ(y)=ȳ K(x,y) depends only on θ(x), not on x. This condition is

commonly known as Dynkin’s criterion. (Weaker conditions suffice if one desires {θ(Xm)}
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to be Markov only for particular starting distributions, see [KS60, Sec. 6.4].) Writing x̄ for

θ(x), the chain {θ(Xm)} then has transition matrix

K̄(x̄, ȳ) = ∑
y:θ(y)=ȳ

K(x,y) for any x with θ(x) = x̄.

Equivalently, as noted in [KS60, Th. 6.3.4], if R is the matrix with 1 in positions x,θ(x) for

all x, and 0 elsewhere, then KR = RK̄.

To apply this to chains from linear maps, take θ : V → V̄ to be a linear map and suppose

θ sends the basis B of V to a basis B̄ of V̄ . (θ must be surjective, but need not be

injective - several elements of B may have the same image in V̄ , as long as the distinct

images are linearly independent.) Then the matrix R above is [θ ]TB,B̄. Recall that K =

[Ψ]TB, and let K̄ =
[
Ψ̄
]T
B̄

for some linear map Ψ̄ : V̄ → V̄ . Then the condition KR = RK̄ is

precisely [θΨ]TB,B̄ =
[
Ψ̄θ
]T
B,B̄

. A θ satisfying this type of relation is commonly known

as an intertwining map. So, if K, K̄ are transition matrices, then θΨ = Ψ̄θ guarantees that

the chain built from Ψ lumps to the chain built from Ψ̄.

When K is not a transition matrix, so the Doob transform is non-trivial, an extra hy-

pothesis is necessary:

Theorem 3.4.1. Let V,V̄ be vector spaces with bases B,B̄, and let Ψ : V → V,Ψ̄ : V̄ →
V̄ be linear maps allowing the Markov chain construction of Theorem 3.1.1, using dual

eigenvectors η , η̄ respectively. Let θ : V → V̄ be a linear map with θ(B) = B̄ and θΨ =

Ψ̄θ . Suppose in addition that at least one of the following holds:

(i) all entries of [Ψ]B are positive;

(ii) the largest eigenvalue of Ψ has multiplicity 1;

(iii) for all x ∈B, η̄(θ(x)) = αη(x) for some constant α 6= 0

Then θ defines a projection of the Ψ-Markov chain to the Ψ̄-Markov chain.

Remark. Condition iii is the weakest of the three hypotheses, and the only one relevant to

the rest of the thesis, as there is an easy way to verify it on Hopf-power Markov chains.

This then leads to Theorem 4.7.1, the Projection Theorem of Hopf-power Markov chains.

Hypotheses i and ii are potentially useful when there is no simple expression for η(x).



CHAPTER 3. MARKOV CHAINS FROM LINEAR OPERATORS 41

Proof. Let β , β̄ be the largest eigenvalues of Ψ,Ψ̄ respectively. The equality [θΨ]T
B̌, ˇ̄B

=[
Ψ̄θ
]T
B̌, ˇ̄B

gives
(
β Ǩ
)

Ř = Ř(β̄ ˇ̄K), where Ř = [θ ]T
B̌, ˇ̄B

. The goal is to recover ǨR = R ˇ̄K

from this: first, show that β = β̄ , then, show that Ř = αR.

To establish that the top eigenvalues are equal, appeal to [Pik13, Thms. 1.3.1.2, 1.3.1.3],

which in the present linear-algebraic notation reads: (the asterisks denote taking the linear-

algebraic dual map)

Proposition 3.4.2.

(i) If f̄ is an eigenvector of Ψ̄∗ with eigenvalue β ′, then f := θ ∗ f̄ (i.e. f (x) = f̄ (x̄)), if

non-zero, is an eigenvector of Ψ∗ with eigenvalue β ′.

(ii) If g is an eigenvector of Ψ with eigenvalue β ′′, then ḡ := θg (i.e. ḡx̄ = ∑x|θ(x)=x̄ gx),

if non-zero, is an eigenvector of Ψ̄ with eigenvalue β ′′.

So it suffices to show that θ ∗ f̄ 6= 0 for at least one eigenvector f̄ of Ψ̄∗ with eigenvalue

β̄ , and θg 6= 0 for at least one eigenvector g of Ψ with eigenvalue β . Since f̄ is non-

zero, it is clear that f (x) = f̄ (x̄) 6= 0 for some x. As for g, the Perron-Frobenius theorem

guarantees that each component of g is non-negative, and since some component of g is

non-zero, ḡx̄ = ∑x|θ(x)=x̄ gx is non-zero for some x̄.

Now show Ř = αR. Recall that Ř = [θ ]T
B̌, ˇ̄B

, so its x,θ(x) entry is η̄(x̄)
η(x) . The corre-

sponding entries of R are all 1, and all other entries of both Ř and R are zero. So hypothesis

iii exactly ensures that Ř = αR. Hypothesis i clearly implies hypothesis ii via the Perron-

Frobenius theorem. To see that hypothesis ii implies hypothesis iii, use Proposition 3.4.2.i

in the above paragraph: the composite function η̄θ , sending x to η̄(x̄), is a non-zero eigen-

vector of Ψ∗ with eigenvalue β̄ = β ; as this eigenvalue has multiplicity 1, it must be some

multiple of η .



Chapter 4

Construction and Basic Properties of
Hopf-power Markov Chains

This chapter covers all theory of Hopf-power Markov chains that do not involve diagonal-

isation, and does not require commutativity or cocommutativity. The goal is the following

routine for initial analysis of a Hopf-power Markov chain:

• (Definition 4.3.3) discern whether the given Hopf algebra H and basis B are suit-

able for building a Hopf-power Markov chain (whether B satisfies the conditions of

a state space basis);

• (Definition 4.3.4) build the Hopf-power Markov chain;

• (Definition 4.3.1) calculate the rescaling function η ;

• (Theorem 4.4.1) describe the chain combinatorially without using the Hopf algebra

structure;

• (Theorem 4.5.1) obtain its stationary distributions;

• (Theorem 4.6.1) describe the time-reversal of this process.

Two examples will be revisited throughout Sections 4.3-4.6 to illustrate the main theorems,

building the following two blurbs step by step.

42
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Example (Riffle-shuffling). The shuffle algebra S has basis B consisting of words. The

product of two words is the sum of their interleavings, and the coproduct is deconcatenation

(Example 4.1.1). The rescaling function is the constant function 1; in other words, no

rescaling is necessary to create the associated Markov chain (Example 4.3.5). The ath

Hopf-power Markov chain is the Bayer-Diaconis a-handed generalisation of the GSR riffle-

shuffle (Example 4.4.2):

1. Cut the deck multinomially into a piles.

2. Interleave the a piles with uniform probability.

Its stationary distribution is the uniform distribution (Example 4.5.3). Its time-reversal

is inverse-shuffling (Example 4.6.2):

1. With uniform probability, assign each card to one of a piles, keeping the cards in the

same relative order.

2. Place the first pile on top of the second pile, then this combined pile on top of the

third pile, etc.

Example (Restriction-then-induction). Let H be the vector space spanned by represen-

tations of the symmetric groups Sn, over all n ∈ N. Let B be the basis of irreducible

representations. The product of representations of Sn and Sm is the induction of their

external product to Sn+m, and the coproduct of a representation of Sn is the sum of its

restrictions to Si×Sn−i for 0≤ i≤ n (Example 4.1.4). For any irreducible representation

x, the rescaling function η(x) evaluates to its dimension dimx (Example 4.3.2). One step

of the ath Hopf-power Markov chain, starting from an irreducible representation x of Sn,

is the following two-fold process (Example 4.4.3):

1. Choose a Young subgroup Si1×·· ·×Sia multinomially.

2. Restrict the starting state x to the chosen subgroup, induce it back up to Sn, then

pick an irreducible constituent with probability proportional to the dimension of its

isotypic component.
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The stationary distribution of this chain is the famous Plancherel measure (Example

4.5.3). This chain is reversible (Example 4.6.4).

Section 4.1 reviews the literature on combinatorial Hopf algebras. Section 4.2 gives

a rudimentary construction of Hopf-power Markov chains, which is improved in Section

4.3, using the Doob transform of Section 3.1. Section 4.4 derives an interpretation of these

chains as a breaking step followed by a combining step. Section 4.5 gives a complete

description of the stationary distributions. Sections 4.6 and 4.7 employ the theory of Sec-

tions 3.3 and 3.4 respectively to deduce that the time-reversal of a Hopf-power chain is

that associated to its dual algebra, and that the projection of a Hopf-power chain under a

Hopf-morphism is the Hopf-power chain on the target algebra.

4.1 Combinatorial Hopf algebras

Recall from Section 1.2 the definition of a graded connected Hopf algebra: it is a vector

space H =
⊕

∞
n=0 Hn with a product map m : Hi⊗H j →Hi+ j and a coproduct map ∆ :

Hn→
⊕n

j=0 H j⊗Hn− j satisfying ∆(wz)=∆(w)∆(z) and some other axioms. To construct

the Markov chains in this thesis, the natural Hopf algebras to use are combinatorial Hopf

algebras, where the product and coproduct respectively encode how to combine and split

combinatorial objects. These easily satisfy the non-negativity conditions required to define

the associated Markov chain, which then has a natural interpretation in terms of breaking

an object and then reassembling the pieces. A motivating example of a combinatorial Hopf

algebra is:

Example 4.1.1 (Shuffle algebra). The shuffle algebra S (N), as defined in [Ree58], has as

its basis the set of all words in the letters {1,2, . . . ,N}. The number of letters N is usually

unimportant, so we write this algebra simply as S . These words are notated in parantheses

to distinguish them from integers.

The product of two words is the sum of all their interleavings, with multiplicity. For

example,

m((13)⊗ (52)) = (13)(52) = (1352)+(1532)+(1523)+(5132)+(5123)+(5213),
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(12)(231) = 2(12231)+(12321)+(12312)+(21231)+(21321)+(21312)+(23121)+2(23112).

[Reu93, Sec. 1.5] shows that deconcatenation is a compatible coproduct. For example,

∆((316)) = /0⊗ (316)+(3)⊗ (16)+(31)⊗ (6)+(316)⊗ /0.

(Here, /0 denotes the empty word, which is the unit of S .)

The associated Markov chain is the GSR riffle-shuffle of Example 1.1.1; below Exam-

ple 4.4.2 will deduce this connection from Theorem 4.4.1.

The idea of using Hopf algebras to study combinatorial structures was originally due

to Joni and Rota [JR79]. The concept enjoyed increased popularity in the late 1990s, when

[Kre98] linked a combinatorial Hopf algebra on trees (see Section 5.3 below) to renormal-

isation in theoretical physics. Today, an abundance of combinatorial Hopf algebras exists;

see the introduction of [Foi12] for a list of references to many examples. An instructive

and entertaining overview of the basics and the history of the subject is in [Zab10]. [LR10]

gives structure theorems for these algebras analogous to the Poincare-Birkhoff-Witt theo-

rem (see Section 2.5 above) for cocommutative Hopf algebras.

A particular triumph of this algebrisation of combinatorics is [ABS06, Th. 4.1], which

claims that QSym, the algebra of quasisymmetric functions (Example 4.1.6 below) is the

terminal object in the category of combinatorial Hopf algebras with a multiplicative linear

functional called a character. Their explicit map from any such algebra to QSym unifies

many ways of assigning polynomial invariants to combinatorial objects, such as the chro-

matic polynomial of graphs and Ehrenboug’s quasisymmetric function of a ranked poset.

Section 5.1.4 makes the connection between these invariants and the probability of absorp-

tion of the associated Hopf-power Markov chains.

There is no universal definition of a combinatorial Hopf algebra in the literature; each

author considers Hopf algebras with slightly different axioms. What they do agree on is

that it should have a distinguished basis B indexed by “combinatorial objects”, such as

permutations, set partitions, or trees, and it should be graded by the “size” of these objects.

The Hopf algebra is connected since the empty object is the only object of size 0.
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For x,y,z1, . . . ,za ∈B, define structure constants ξ
y
z1,...,za,η

z1,...,za
x by

z1 . . .za = ∑
y∈B

ξ
y
z1,...,za

y, ∆
[a](x) = ∑

z1,...,za∈B
η

z1,...,za
x z1⊗·· ·⊗ za.

Note that, by the inductive definitions of m[a] and ∆[a], all structure constants are determined

by ξ
y
w,z and η

w,z
x (see the proof of Lemma 4.2.1). Shorten these to ξ

y
wz and ηwz

x , without the

comma in between w and z. In a combinatorial Hopf algebra, these two numbers should

have interpretations respectively as the (possibly weighted) number of ways to combine

w,z and obtain y, and the (possibly weighted) number of ways to break x into w,z. Then,

the compatibility axiom ∆(wz) = ∆(w)∆(z) translates roughly into the following: suppose

y is one possible outcome when combining w and z; then every way of breaking y comes

(bijectively) from a way of breaking w and z separately. The axioms deg(wz) = deg(w)+

deg(z) and ∆(x) ∈
⊕deg(x)

i=0 Hi⊗Hdeg(x)−i simply say that the “total size” of an object is

conserved under breaking and combining.

These are the minimal conditions for a combinatorial Hopf algebra, and will be suffi-

cient for this thesis. For interest, a common additional hypothesis is the existence of an

internal product Hn⊗Hn→Hn, and perhaps also an internal coproduct. Note that com-

mutativity of a combinatorial Hopf algebra indicates a symmetric assembling rule, and a

symmetric breaking rule induces a cocommutative Hopf algebra.

Many families of combinatorial objects have a single member of size 1, so H1 is often

one-dimensional. For example, there is only one graph on one vertex, and only one partition

of total size 1. In such cases, • will denote this sole object of size 1, so B1 = {•}. A larger

B1 may be the sign of a disconnected state space. That is, the associated Markov chain

may separate into two (or more) chains running on disjoint subsets of the state space. For

example, the usual grading on the shuffle algebra is by the length of the words. Then S3

contains both permutations of {1,2,3} and permutations of {1,1,2}, but clearly no amount

of shuffling will convert from one set to the other. To study these two Markov chains

separately, refine the degree of a word w to be a vector whose ith component is the number

of occurrences of i in w. (Trailing 0s in this vector are usually omitted.) So summing the

components of this multidegree gives the old notion of degree. Now S(1,1,1) contains the

permutations of {1,2,3}, whilst S(2,1) contains the permutations of {1,1,2}.
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As Proposition 4.1.2 below will show, there is often an analogous multigrading on any

combinatorial Hopf algebra with |B1|> 1. The catch is that elements of the basis B may

not be homogeneous in this multigrading, that is, B might not be the disjoint union of bases

Bν for each degree ν subspace Hν . (Currently, I do not know of any examples of such

non-homogeneous bases.) In the case where B = qνBν , Theorem 4.5.1.ii shows that the

stationary distribution of the associated Markov chains (on each subspace Hν ) is unique.

Proposition 4.1.2. Let H =
⊕

n≥0 Hn be a graded connected Hopf algebra over R. Sup-

pose B1 := {•1,•2, . . . ,•|B1|} is a basis of H1. For each ν = (ν1, . . . ,ν|B1|) ∈ N|B1|, set

c1 = c2 = · · ·= cν1 = •1, cν1+1 = · · ·= cν1+ν2 = •2, etc., and define

Hν := {x ∈H |∆̄[|ν |](x) ∈ span{cσ(1)⊗·· ·⊗ cσ(|ν |)|σ ∈S|ν |}.

If Hn =
⊕
|ν |=n Hν , then this gives a multigrading on H refining

the N-grading. This is the unique multigrading satisfying

deg(•1) = (1,0, . . . ,0),deg(•2) = (0,1,0, . . .0), . . . ,deg(•|B1|) = (0, . . . ,0,1).

Proof. Comultiplication respects this notion of degree as coassociativity implies

∆[i+ j](x) = (∆[i]⊗∆[ j])(∆x).

It is trickier to see the product respecting the degree. Take z ∈ Hi,w ∈ H j. Then

∆[i+ j](zw) = ∆[i+ j](z)∆[i+ j](w). Since deg(z) = i, at least j tensor-factors in each term of

∆[i+ j](z) are in H0, and the same is true for at least i tensor-factors in each term of ∆[i+ j](w).

Hence a term in ∆̄[i+ j](zw) must arise from terms in ∆[i+ j](z),∆[i+ j](w) which have exactly

j and i tensor-factors respectively in H0, in complementary positions. A term of ∆[i+ j](z)

with j tensor-factors in degree 0 must have the remaining i tensor-factors in degree 1, hence

it corresponds to a term in ∆̄[i](z), and similarly for w. So there is a bijection

{
terms in

∆̄[i](z)

}
×

{
terms in

∆̄[ j](w)

}
×


subsets of

{1,2, . . . , i+ j}
of size i

↔
{

terms in

∆̄[i+ j](zw)

}

c1⊗·· ·⊗ ci, c′1⊗·· ·⊗ c′j, k1 < · · ·< ki→ krth tensor-factor is cr,

c′1, . . . ,c
′
j in other tensor-factors.
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And so the multidegree deg(zw) is deg(z)+deg(w).

As for uniqueness: suppose ∆̄[|ν |](x)∈ span{cσ(1)⊗·· ·⊗cσ(|ν |)|σ ∈S|ν |}. Then, since

the coproduct respects the multigrading, it must be that deg(x) = degc1 + · · ·+ degc|ν | =

ν .

The rest of this section is a whistle-stop tour of three sources of combinatorial Hopf

algebras. A fourth important source is operads [Hol04], but that theory is too technical to

cover in detail here.

4.1.1 Species-with-Restrictions

This class of examples is especially of interest in this thesis, as the associated Markov

chains have two nice properties. Firstly, constructing these chains does not require the

Doob transform (Definition 4.2.2). Secondly, the natural bases of these Hopf algebras are

free-commutative in the sense of Chapter 5, so additional tools are available to study the

associated Markov chains. For instance, these chains are absorbing, and Section 5.1.3

provides bounds for the probability of being “far from absorption”.

The theory of species originated in [Joy81], as an abstraction of common manipulations

of generating functions. Loosely speaking, a species is a type of combinatorial structure

which one can build on sets of “vertices”. Important examples include (labelled) graphs,

trees and permutations. The formal definition of a species is as a functor from the category

of sets with bijections to the same category. In this categorical language, the species of

graphs maps a set V to the set of all graphs whose vertices are indexed by V . There are op-

erations on species which correspond to the multiplication, composition and differentiation

of their associated generating functions; these are not so revelant to the present Markov

chain construction, so the reader is referred to [BLL98] for further details.

Schmitt [Sch93] first makes the connection between species and Hopf algebras. He

defines a species-with-restrictions, or R-species, to be a functor from sets with coinjections

to the category of functions. (A coinjection is a partially-defined function whose restriction

to where it’s defined is a bijection; an example is f : {1,2,3,4} → {7,8} with f (1) = 8,

f (3) = 7 and f (2), f (4) undefined.) Intuitively, these are combinatorial structures with a

notion of restriction to a subset of their vertex set; for example, one can restrict a graph to a
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Figure 4.1: An example coproduct calculation in Ḡ , the Hopf algebra of graphs

subset of its vertices by considering only the edges connected to this subset (usually known

as the induced subgraph). Schmitt fashions from each such species a Hopf algebra which

is both commutative and cocommutative; Example 4.1.3 below explains his construction

via the species of graphs.

Example 4.1.3 (The Hopf algebra of graphs). [Sch94, Sec. 12; Fis10, Sec. 3.2] Let Ḡ

be the vector space with basis the set of simple graphs (no loops or multiple edges). The

vertices of such graphs are unlabelled, so these may be considered the isomorphism classes

of graphs. Define the degree of a graph to be its number of vertices. The product of two

graphs is their disjoint union, and the coproduct is

∆(G) = ∑GS⊗GSC

where the sum is over all subsets S of vertices of G, and GS,GSC denote the subgraphs that

G induces on the vertex set S and its complement. As an example, Figure 4.1 calculates

the coproduct of P3, the path of length 3. Writing P2 for the path of length 2, and • for the

unique graph on one vertex, this calculation shows that

∆(P3) = P3⊗1+2P2⊗•+•2⊗•+2•⊗P2 +•⊗•2 +1⊗P3.

As mentioned above, this Hopf algebra, and analogous constructions from other species-

with-restrictions, are both commutative and cocommutative.

As Example 4.2.3 will describe, the Hopf-power Markov chain on Ḡ models the re-

moval of edges: at each step, colour each vertex independently and uniformly in one of a

colours, and disconnect edges between vertices of different colours. This chain will act as

the running example in Section 5.1, to illustrate general results concerning a Hopf-power
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Markov chain on a free-commutative basis. However, because the concept of graph is so

general, it is hard to say anything specific or interesting without restricting to graphs of a

particular structure. For example, restricting to unions of complete graphs gives the rock-

breaking chain of Section 5.2. I aim to produce more such examples in the near future.

Recently, Aguiar and Mahajan [AM10] extended vastly this construction to the concept

of a Hopf monoid in species, which is a finer structure than a Hopf algebra. Their Chapter

15 gives two major pathways from a species to a Hopf algebra: the Bosonic Fock functor,

which is essentially Schmitt’s original idea, and the Full Fock functor. (Since the product

and coproduct in the latter involves “shifting” and “standardisation” of labels, the resulting

Hopf algebras lead to rather contrived Markov chains, so this thesis will not explore the

Full Fock functor in detail.) In addition there are decorated and coloured variants of these

two constructions, which allow the input of parameters. Many popular combinatorial Hopf

algebras, including all examples in this thesis, arise from Hopf monoids; perhaps this is an

indication that the Hopf monoid is the “correct” setting to work in. The more rigid set of

axioms of a Hopf monoid potentially leads to stronger theorems.

In his masters’ thesis, Pineda [Pin14] transfers some of the Hopf-power Markov chain

technology of this thesis to the world of Hopf monoids, building a Markov chain on faces

of a permutohedra. His chain has many absorbing states, a phenomenon not seen in any of

the chains in this thesis. This suggests that a theory of Markov chains from Hopf monoids

may lead to a richer collection of examples.

4.1.2 Representation rings of Towers of Algebras

The ideas of this construction date back to Zelevinsky [Zel81, Sec. 6], which the lecture

notes [GR14, Sec. 4] retell in modern notation. The archetype is as follows:

Example 4.1.4 (Representations of symmetric groups). Let Bn be the irreducible represen-

tations of the symmetric group Sn, so Hn is the vector space spanned by all representations

of Sn. The product of representations w,z of Sn, Sm respectively is defined using induc-

tion:

m(w⊗ z) = IndSn+m
Sn×Sm

w× z,
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and the coproduct of x, a representation of Sn, is the sum of its restrictions:

∆(x) =
n⊕

i=0

ResSn
Si×Sn−i

x.

Mackey theory ensures these operations satisfy ∆(wz) = ∆(w)∆(z). This Hopf algebra is

both commutative and cocommutative, as Sn×Sm and Sm×Sn are conjugate in Sn+m;

however, the general construction need not have either symmetry. The associated Markov

chain describes the restriction then induction of representations, see Example 4.4.3.

It’s natural to attempt this construction with, instead of {Sn}, any series of algebras

{An} where an injection An⊗Am ⊆ An+m allows this outer product of its modules. For

the result to be a Hopf algebra, one needs some additional hypotheses on the algebras

{An}; this leads to the definition of a tower of algebras in [BL09]. In general, two Hopf

algebras can be built this way: one using the finitely-generated modules of each An, and

one from the finitely-generated projective modules of each An. (For the above example

of symmetric groups, these coincide, as all representations are semisimple.) These are

graded duals in the sense of Section 2.1. For example, [KT97, Sec. 5] takes An to be

the 0-Hecke algebra, then the Hopf algebra of finitely-generated modules is QSym, the

Hopf algebra of quasisymmetric functions. Example 4.1.6 below will present QSym in

a different guise that does not require knowledge of Hecke algebras. The Hopf algebra

of finitely-generated projective modules of the 0-Hecke algebras is Sym, the algebra of

noncommutative symmetric functions of Section 6.2.2. Further developments regarding

Hopf structures from representations of towers of algebras are in [BLL12].

It will follow from Definition 4.3.4 of a Hopf-power Markov chain that, as long as

every irreducible representation of An has a non-zero restriction to some proper subalgebra

Ai⊗An−i (1≤ i≤ n), one can build a Markov chain on the irreducible representations of the

tower of algebras {An}. (Unfortunately, when An is the group algebra of GLn over a finite

field, the cuspidal representations violate this hypothesis.) These chains should be some

variant of restriction-then-induction. It is highly possible that the precise description of the

chain is exactly as in Example 4.4.3: starting at an irreducible representation of An, pick

i ∈ [0,n] binomially, restrict to Ai⊗An−i, then induce back to An and pick an irreducible

representation with probability proportional to the dimension of the isotypic component.
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Interestingly, it is sometimes possible to tell a similar story with the basis Bn being a set

of reducible representations, possibly with slight tweaks to the definitions of product and

coproduct. In [Agu+12; BV13; ABT13; And14], Bn is a supercharacter theory of various

matrix groups over finite fields. This means that the matrix group can be partitioned into

superclasses, which are each a union of conjugacy classes, such that each supercharacter

(the characters of the representations in Bn) is constant on each superclass, and each irre-

ducible character of the matrix group is a consituent of exactly one supercharacter. [DI08]

gives a unified method to build a supercharacter theory on many matrix groups; this is

useful as the irreducible representations of these groups are extremely complicated.

4.1.3 Subalgebras of Power Series

The starting point for this approach is the algebra of symmetric functions, widely consid-

ered as the first combinatorial Hopf algebra in history, and possibly the most extensively

studied. Thorough textbook introductions to its algebra structure and its various bases are

[Mac95, Chap. 1] and [Sta99, Chap. 7].

Example 4.1.5 (Symmetric functions). Work in the algebra R[[x1,x2, . . . ]] of power series

in infinitely-many commuting variables xi, graded so deg(xi) = 1 for all i. The algebra of

symmetric functions Λ is the subalgebra of power series of finite degree invariant under the

action of the infinite symmetric group S∞ permuting the variables. (These elements are

often called “polynomials” due to their finite degree, even though they contain infinitely-

many monomial terms.)

An obvious basis of Λ is the sum of monomials in each S∞ orbit; these are the monomial

symmetric functions:

mλ := ∑
(i1,...,il)

i j distinct

xλ1
i1 . . .xλl

il .
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Here, λ is a partition of deg(mλ ): λ1 + · · ·+λl(λ ) = deg(mλ ) with λ1 ≥ ·· · ≥ λl(λ ). For

example, the three monomial symmetric functions of degree three are:

m(3) = x3
1 + x3

2 + . . . ;

m(2,1) = x2
1x2 + x2

1x3 + · · ·+ x2
2x1 + x2

2x3 + x2
2x4 + . . . ;

m(1,1,1) = x1x2x3 + x1x2x4 + · · ·+ x1x3x4 + x1x3x5 + · · ·+ x2x3x4 + . . . .

It turns out [Sta99, Th. 7.4.4, Cor. 7.6.2] that Λ is isomorphic to a polynomial ring in

infinitely-many variables: Λ = R[h(1),h(2), . . . ], where

h(n) := ∑
i1≤···≤in

xi1 . . .xin.

(This is often denoted hn, as it is standard to write the integer n for the partition (n) of

single part.) For example,

h(2) = x2
1 + x1x2 + x1x3 + · · ·+ x2

2 + x2x3 + . . . .

So, setting hλ := h(λ1) . . .h(λl(λ ))
over all partitions λ gives another basis of Λ, the complete

symmetric functions.

Two more bases are important: the power sums are p(n) := ∑i xn
i , pλ := p(λ1) . . . p(λl(λ ))

;

and the Schur functions {sλ} are the image of the irreducible representations under the

Frobenius characteristic isomorphism from the representation rings of the symmetric

groups (Example 4.1.4) to Λ [Sta99, Sec. 7.18]. This map is defined by sending the

indicator function of an n-cycle of Sn to the scaled power sum
p(n)
n . (I am omitting the

elementary basis {eλ}, as it has similar behaviour as {hλ}.)
The coproduct on Λ comes from the “alphabet doubling trick”. This relies on the iso-

morphism between the power series algebras R[[x1,x2, . . . ,y1,y2, . . . ]] and R[[x1,x2, . . . ]]⊗
R[[y1,y2, . . . ]], which simply rewrites the monomial xi1 . . .xiky j1 . . .y jl as xi1 . . .xik ⊗
y j1 . . .y jl . To calculate the coproduct of a symmetric function f , first regard f as a

power series in two sets of variables x1,x2, . . . ,y1,y2, . . . ; then ∆( f ) is the image of
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f (x1,x2, . . .y1,y2, . . .) in R[[x1,x2, . . . ]]⊗R[[y1,y2, . . . ]] under the above isomorphism. Be-

cause f is a symmetric function, the power series f (x1,x2, . . . ,y1,y2, . . .) is invariant under

the permutation of the xis and yis separately, so ∆( f ) is in fact in Λ⊗Λ. For example,

h(2)(x1,x2, . . .y1,y2 . . .) = x2
1 + x1x2 + x1x3 + · · ·+ x1y1 + x1y2 + . . .

+ x2
2 + x2x3 + · · ·+ x2y1 + x2y2 + . . .

+ . . .

+ y2
1 + y1y2 + y1y2 + . . .

+ y2
2 + y2y3 + . . .

+ . . .

= h(2)(x1,x2, . . .)+h(1)(x1,x2, . . .)h(1)(y1,y2, . . .)+h(2)(y1,y2, . . .),

so ∆(h(2)) = h(2)⊗1+h(1)⊗h(1)+1⊗h(2). In general, ∆(h(n)) = ∑
n
i=0 h(i)⊗h(n−i), with

the convention h(0) = 1. (This is Geissenger’s original definition of the coproduct [Gei77].)

Note that ∆(p(n)) = 1⊗ p(n)+ p(n)⊗ 1; this property is the main reason for working with

the power sum basis.

The Hopf-power Markov chain on {hλ} describes an independent multinomial rock-

breaking process, see Section 5.2.

The generalisation of Λ is easier to see if the S∞ action is rephrased in terms of

a function to a fundamental domain. Observe that each orbit of the monomials, un-

der the action of the infinite symmetric group permuting the variables, contains pre-

cisely one term of the form xλ1
1 . . .xλl

l for some partition λ . Hence the set D :={
xλ1

1 . . .xλl
l |l,λi ∈ N,λ1 ≥ λ2 ≥ ·· · ≥ λl > 0

}
is a fundamental domain for this S∞ action.

Define a function f sending a monomial to the element of D in its orbit; explicitly,

f
(

xi1
j1 . . .x

il
jl

)
= x

iσ(1)
1 . . .x

iσ(l)
l ,

where σ ∈Sl is such that iσ(1) ≥ ·· · ≥ iσ(l). For example, f (x1x2
3x4) = x2

1x2x3. It is clear

that the monomial symmetric function mλ , previously defined to be the sum over S∞orbits,
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is the sum over preimages of f :

mλ := ∑
f (x)=xλ

x,

where xλ is shorthand for xλ1
1 . . .xλl

l . Summing over preimages of other functions can give

bases of other Hopf algebras. Again, the product is that of power series, and the coproduct

comes from alphabet doubling. Example 4.1.6, essentially a simplified, commutative, ver-

sion of [NT06, Sec. 2], builds the algebra of quasisymmetric functions using this recipe.

This algebra is originally due to Gessel [Ges84], who defines it in terms of P-partitions.

Example 4.1.6 (Quasisymmetric functions). Start again with R[[x1,x2, . . . ]], the algebra of

power series in infinitely-many commuting variables xi. Let pack be the function send-

ing a monomial xi1
j1 . . .x

il
jl (assuming j1 < · · · < jl) to its packing xi1

1 . . .xil
l . For example,

pack(x1x2
3x4) = x1x2

2x3. A monomial is packed if it is its own packing, in other words, its

constituent variables are consecutive starting from x1. Let D be the set of packed mono-

mials, so D :=
{

xi1
1 . . .xil

l |l, i j ∈ N
}

. Writing I for the composition (i1, . . . , il) and xI for

xi1
1 . . .xil

l , define the monomial quasisymmetric functions to be:

MI := ∑
pack(x)=xI

x = ∑
j1<···< jl(I)

xi1
j1 . . .x

il(I)
jl(I)

.

For example, the four monomial quasisymmetric functions of degree three are:

M(3) = x3
1 + x3

2 + . . . ;

M(2,1) = x2
1x2 + x2

1x3 + · · ·+ x2
2x3 + x2

2x4 + · · ·+ x2
3x4 + . . . ;

M(1,2) = x1x2
2 + x1x2

3 + · · ·+ x2x2
3 + x2x2

4 + · · ·+ x3x2
4 + . . . ;

M(1,1,1) = x1x2x3 + x1x2x4 + · · ·+ x1x3x4 + x1x3x5 + · · ·+ x2x3x4 + . . . .

QSym, the algebra of quasisymmetric functions, is then the subalgebra of R[[x1,x2, . . . ]]

spanned by the MI .

Note that the monomial symmetric function m(2,1) is M(2,1)+M(1,2); in general, mλ =

∑MI over all compositions I whose parts, when ordered decreasingly, are equal to λ . Thus

Λ is a subalgebra of QSym.
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The basis of QSym with representation-theoretic significance, analogous to the Schur

functions of Λ, are the fundamental quasisymmetric functions:

FI = ∑
J≥I

MJ

where the sum runs over all compositions J refining I (i.e. I can be obtained by gluing

together some adjacent parts of J). For example,

F(2,1) = M(2,1)+M(1,1,1) = ∑
j1≤ j2< j3

x j1x j2x j3.

The fundamental quasisymmetric functions are sometimes denoted LI or QI in the litera-

ture. They correspond to the irreducible modules of the 0-Hecke algebra [KT97, Sec. 5].

The analogue of power sums are more complex (as they natually live in the dual Hopf

algebra to QSym), see Section 6.2.2 for a full definition.

The Hopf-power Markov chain on the basis of fundamental quasisymmetric functions

{FI} is the change in descent set under riffle-shuffling, which Section 6.2 analyses in detail.

In the last decade, a community in Paris have dedicated themselves [DHT02; NT06;

FNT11] to recasting familiar combinatorial Hopf algebras in this manner, a process they

call polynomial realisation. They usually start with power series in noncommuting vari-

ables, so the resulting Hopf algebra is not constrained to be commutative. The least techni-

cal exposition is probably [Thi12], which also provides a list of examples. The simplest of

these is Sym, a noncommutative analogue of the symmetric functions; its construction is

explained in Section 6.2.2 below. For a more interesting example, take MT to be the sum of

all noncommutative monomials with Q-tableau equal to T under the Robinson-Schensted-

Knuth algorithm [Sta99, Sec. 7.11]; then their span is FSym, the Poirier-Reutenauer Hopf

algebra of tableaux [PR95]. [Hiv07, Th. 31] and [Pri13, Th. 1] give sufficient conditions

on the functions for this construction to produce a Hopf algebra. One motivation for this

program is to bring to light various bases that are free (like hλ ), interact well with the co-

product (like pλ ) or are connected to representation theory (like sλ ), and to carry over some

of the vast amount of machinery developed for the symmetric functions to analyse these

combinatorial objects in new ways. Indeed, Joni and Rota anticipated in their original paper
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[JR79] that “many an interesting combinatorial problem can be formulated algebraically as

that of transforming this basis into another basis with more desirable properties”.

4.2 First Definition of a Hopf-power Markov Chain

Recall from Section 1.1 the GSR riffle-shuffle of a deck of cards: cut the deck into two

piles according to a symmetric binomial distribution, then drop the cards one by one from

the bottom of the piles, chosen with probability proportional to the current pile size. As

mentioned in Section 1.3, a direct calculation shows that, for words x,y of length n in the

shuffle algebra of Example 4.1.1, the coefficient of y in 2−nm∆(x) is the probability of

obtaining a deck of cards in order y after applying a GSR riffle-shuffle to a deck in order x:

2−nm∆(x) = ∑
y

K(x,y)y. (4.1)

(Here, identify the word x1x2 . . .xn in the shuffle algebra with the deck whose top card has

value x1, second card has value x2, and so on, so xn is the value of the bottommost card.)

In other words, the matrix of the linear operator 2−nm∆ on Hn, with respect to the basis of

words, is the transpose of the transition matrix of the GSR shuffle. Furthermore, the ma-

trix of the ath Hopf-power map a−nΨa := a−nm[a]∆[a] on Hn (with respect to the basis of

words) is the transpose of the transition matrix of an a-handed shuffle of [BD92]; this will

follow from Theorem 4.4.1 below. An a-handed shuffle is a straightforward generalisation

of the GSR shuffle: cut the deck into a piles according to the symmetric multinomial dis-

tribution, then drop the cards one by one from the bottom of the pile, where the probability

of dropping from any particular pile is proportional to the number of cards currently in that

pile. This second step is equivalent to all interleavings of the a piles being equally likely;

more equivalent views are in [BD92, Chap. 3].

This relationship between a-handed shuffles and the ath Hopf-power map on the shuffle

algebra motivates the question: for which graded Hopf algebras H and bases B does

Equation 4.1 (and its analogue for a > 2) define a Markov chain? In other words, what

conditions on H and B guarantee that the coefficients of a−nΨa(x) are non-negative and



CHAPTER 4. CONSTRUCTION AND BASIC PROPERTIES 58

sum to 1? Achieving a sum of 1 is the subject of the next section; as for non-negativity, one

solution is to mandate that the product and coproduct structure constants are non-negative:

Lemma 4.2.1. Let H be a Hopf algebra over R with basis B such that:

(i) for all w,z ∈B, wz = ∑y∈B ξ
y
wzy with ξ

y
wz ≥ 0 (non-negative product structure con-

stants);

(ii) for all x ∈B, ∆(x) = ∑w,z∈B ηwz
x w⊗ z with ηwz

x ≥ 0 (non-negative coproduct struc-

ture constants).

Then, for all x,y ∈B, the coefficient of y in Ψa(x) is non-negative, for all a.

Proof. In the notation for structure constants at the start of Section 4.1, the coefficient of

y in Ψa(x) is ∑z1,...,zn ξ
y
z1,...,zaη

z1,...,za
x . By definition of a-fold multiplication and comultipli-

cation,

ξ
y
z1,...,za

= ∑
z

ξ
y
zza

ξ
z
z1,...,za−1

, η
z1,...,za
x = ∑

z
η

zxa
x η

z1,...,za−1
z ,

so, by induction on a (the base case of a= 2 being the hypothesis), both ξ
y
z1,...,za and η

z1,...,za
x

are non-negative.

So the following indeed specifies a Markov chain:

Definition 4.2.2 (First definition of Hopf-power Markov chain). Let H =
⊕

n≥0 Hn be a

graded connected Hopf algebra over R, with each Hn finite-dimensional. Let B =qn≥0Bn

be a basis of H with non-negative structure constants (i.e. satisfying conditions i, ii of

Lemma 4.2.1 above). Assume in addition that, for all x ∈Bn, the coefficients (with respect

to Bn) of a−nΨa(x) sum to 1. Then the ath Hopf-power Markov chain on Bn has transition

matrix Ka,n := [a−nΨa]
T
Bn

, the transpose of the matrix of a−nΨa with respect to the basis

Bn.

Observe that, if H comes from a species-with-restrictions in the method of Section

4.1.1, then the coefficients of a−nΨa(x) sum to 1, for all a and all n. This is because the

terms in ∆[a](x) correspond to the an ways of partitioning the underlying set into a (possibly

trivial) subsets (the order of the subsets matter), and each such term gives only a single term

under m[a].
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Example 4.2.3. Take H = Ḡ , the algebra of graphs of Example 4.1.3. Recall that the

product of two graphs is their disjoint union, and the coproduct gives the induced subgraphs

on two complimentary subsets of the vertex set. Thus one step of the associated ath Hopf-

power Markov chain is the following: independently assign to each vertex one of a colours,

each with an equal probability of 1
a . Then remove all edges between vertices of different

colours. As an example, take a = 2 and start at P3, the path of length 3. Write P2 for the

two-vertex graph with a single edge. By Figure 4.1,

∆(P3) = P3⊗1+2P2⊗•+•2⊗•+2•⊗P2 +•⊗•2 +1⊗P3.

Hence Ψ2(P3) = 2P3 +4P2 •+2•3. So, starting at P3, the chain stays at P3 with probability
2
23 = 1

4 , or moves to P2• with probability 4
23 = 1

2 , or moves to the disconnected graph with

probability 2
23 =

1
4 .

4.3 General Definition of a Hopf-power Markov Chain

One would like to remove from Definition 4.2.2 above the restrictive condition that the

sum of the coefficients of a−nΨa(x) is 1. In other words, it would be good to build a

Markov chain out of Ψa even when the matrix Ka,n := [a−nΨa]
T
Bn

does not have every row

summing to 1. Lemma 3.1.1, the Doob h-transform for linear maps, gives one possible

answer: instead of Bn, work with the basis B̌n :=
{

x̌ := x
ηn(x)
|x ∈Bn

}
, where ηn ∈H ∗

n

is a “positive” eigenvector for the map dual to Ψa. Recall from Section 2.1 that this dual

map is again a Hopf-power map Ψa, but on the (graded) dual Hopf algebra H ∗. On a

combinatorial Hopf algebra, one choice of ηn has a remarkably simple description as “the

number of ways to break into singletons”, and is usually a well-investigated number. The

first two definitions of ηn below are more intuitive, as they avoid direct reference to H ∗,

whilst the third streamlines the proofs.

Definition 4.3.1. Three equivalent definitions of the rescaling functions ηn : Bn→ R are:
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(i) ηn(x) is the sum of coproduct structure constants (over all ordered n-tuples, possibly

with repetition of the ci):

ηn(x) := ∑
c1,c2,...,cn∈B1

η
c1,...,cn
x ;

(ii) ηn(x) is the sum of the coefficients of ∆̄[n](x), the n-fold reduced coproduct of x,

when expanded in the basis B⊗n. (Recall from Section 2.2 that ∆̄(x) := ∆̄[2](x) :=

∆(x)−1⊗ x− x⊗1, and ∆̄[n] := (ι⊗·· ·⊗ ι⊗ ∆̄)∆̄[n−1], so ∆̄[n] ∈H ⊗n
1 .)

(iii) Let •∗ ∈H ∗
1 be the linear function on H taking value 1 on each element of B1 and

0 on all other basis elements. (In the dual basis notation from the start of Chapter

3, •∗ := ∑c∈B1 c∗; in particular, if B1 = {•} then this agrees with the dual basis

notation.) Then set ηn := (•∗)n. In other words, ηn(x) := (•∗⊗·· ·⊗•∗)∆[n](x).

Since, for each n∈N, the rescaling function ηn has a different domain (namely Hn), no

confusion arises from abbreviating ηdegx(x) by η(x). Observe though that such a function

η is not an element of the (graded) dual H ∗, as it is an infinite sum of linear functions on

the subspaces Hn. However, the variant ηdegx(x)
degx! is a character in the sense of [ABS06], as

it is multiplicative; see Lemma 5.1.2.

Example 4.3.2. Recall from Example 4.1.4 the Hopf algebra of representations of the

symmetric groups, with product arising from induction and coproduct from restriction. Its

distinguished basis B is the set of irreducible representations. So B1 consists only of the

trivial representation •, thus, by the first of the equivalent definitions above, η(x) = η
•,...,•
x .

For an irreducible representation x of Sn, ResSn
S1×···×S1

x = dimx(•⊗ · · ·⊗ •), so η(x) =

dimx.

A simple application of the Symmetrisation Lemma (Theorem 2.3.2) shows that ηn is

an eigenvector of Ψa : H ∗
n →H ∗

n of eigenvalue an, since •∗ has degree 1 and is hence

primitive. In order to use ηn in the Doob transform, we must ensure that ηn(x) > 0 for

all x ∈ Bn. (It suffices to force ηn(x) 6= 0 for all x ∈ Bn, since, as a sum of coproduct

structure constants, ηn takes non-negative values on Bn.) This is the purpose of condition

iii in Definition 4.3.3 below. This requirement essentially translates to “every object of
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size greater than 1 breaks non-trivially”; the intuition is that repeatedly applying such non-

trivial breaks to the pieces provides a way to reduce x to singletons. Theorem 4.3.7 below

rigorises this heuristic, and explains why it is necessary to forbid primitive basis elements

of degree greater than one in order to apply the Doob transform to the Hopf-power map,

for all choices of rescaling functions.

Definition 4.3.3 (State space basis). Let H =
⊕

n≥0 Hn be a graded connected Hopf alge-

bra over R, with each Hn finite-dimensional. A basis B =qn≥0Bn of H is a state space

basis if:

(i) for all w,z ∈B, wz = ∑y∈B ξ
y
wzy with ξ

y
wz ≥ 0 (non-negative product structure con-

stants);

(ii) for all x ∈B, ∆(x) = ∑w,z∈B ηwz
x w⊗ z with ηwz

x ≥ 0 (non-negative coproduct struc-

ture constants);

(iii) for all x∈B with deg(x)> 1, it holds that ∆(x) 6= 1⊗x+x⊗1 (no primitive elements

in B of degree greater than 1).

Note that H may contain primitive elements of any degree, so long as those of degree

greater than one are not in the basis B. Applying the Doob transform to Ψa : Hn→Hn

(with the rescaling function η) then creates the family of Markov chains defined below.

Definition 4.3.4 (General definition of Hopf-power Markov chain). Let H =⊕n≥0Hn be

a graded connected Hopf algebra over R, with each Hn finite-dimensional, and with state

space basis B. Take ηn according to Definition 4.3.1. Then the ath Hopf-power Markov

chain on Bn has transition matrix Ǩa,n := [a−nΨa]
T
B̌n

, where B̌n :=
{

x̌ := x
ηn(x)
|x ∈Bn

}
.

In other words,

a−n
Ψ

a(x̌) = ∑
y∈Bn

Ǩa,n(x,y)y̌,

or, equivalently,

a−n
Ψ

a(x) = ∑
y∈Bn

ηn(x)
ηn(y)

Ǩa,n(x,y)y.

Recall that, if H is commutative or cocommutative, then the power law ΨaΨa′ = Ψaa′

holds. Thus long term behaviour of Hopf-power Markov chains may be deduced from
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increasing the power further and further: taking m steps of the ath Hopf-power chain is

equivalent to a single step of the amth Hopf-power chain. This will be relevant in Section

5.1.4, on approximations of absorbing probabilities using quasisymmetric functions.

Example 4.3.5. In the shuffle algebra of Example 4.1.1, for any word x, and any

c1, . . . ,cn ∈ B1, the coproduct structure constant η
c1,...,cn
x = 0 unless x is the concatena-

tion of c1,c2, . . . ,cn in that order, in which case η
c1,...,cn
x = 1. So η(x) = 1 for all x ∈B,

thus no rescaling of the basis is necessary to define the Hopf-power Markov chain. (No

rescaling is necessary whenever η is a constant function on each Bn - this constant may

depend on n.)

Example 4.3.6. Take H to be the Hopf algebra of representations of the symmetric groups,

as in Example 4.1.4. B3 is the set of irreducible representations of S3, comprising the

trivial representation, the sign representation and the two-dimensional irreducible repre-

sentation. From explicit computation of m∆ =
⊕3

i=0 IndS3
Si×S3−i

ResS3
Si×S3−i

for these three

representations, it follows that

K2,3 := [2−3m∆]TB3
=


1
2 0 1

4

0 1
2

1
4

1
4

1
4

3
4

 .
Observe that (1,1,2), the vector of dimensions of these representations, is a (right) eigen-

vector of K2,3 of eigenvalue 1, as predicted by Example 4.3.2. So applying the Doob

transform to K2,3 is to divide the third row by two and multiply the third column by 2,

giving

Ǩ2,3 =


1
2 0 1

2

0 1
2

1
2

1
8

1
8

3
4

 .
This is a transition matrix as its rows sum to 1. Example 4.4.3 below interprets this Markov

chain as restriction-then-induction.

As promised, here is a check that η indeed takes positive values on a state space basis,

and that, assuming H1 6= /0, there is no suitable rescaling function for bases which are not
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state space bases (i.e. there are primitive basis elements of degree greater than one.) In this

sense, η is an optimal rescaling function. Example 4.3.8 gives a numerical illustration of

this second fact.

Theorem 4.3.7. Suppose H =⊕n≥0Hn is a graded connected Hopf algebra over R with

non-negative coproduct structure constants in the basis B = qn≥0Bn. Assume also that

H1 6= /0.

(i) If ∆(x) 6= 1⊗x+x⊗1 for all x ∈B with deg(x)> 1, then the functions ηn of Defini-

tion 4.3.1 satisfy ηdegx(x)> 0 for all x ∈B.

(ii) If ∆(x) = 1⊗x+x⊗1 for some x∈Bn with n> 1, then η ′n(x) = 0 for all eigenvectors

η ′n of Ψa : H ∗
n →H ∗

n of highest eigenvalue.

Proof. Recall that the intuition behind Part i is that “repeatedly breaking x non-trivially

gives a way to reduce it to singletons”. So proceed by induction on degx. If degx = 1, then

η1(x) = 1 by definition. Otherwise, by hypothesis, ∆̄(x) 6= 0. Take a term w⊗ z in ∆̄(x), so

ηwz
x > 0. Then the counit axiom forces degw,degz < degx. Consequently

ηdegx(x) = (•∗)degx(x)

= (•∗)degw(•∗)degz(x)

=
[
(•∗)degw⊗ (•∗)degz

]
(∆x)

=
[
(•∗)degw⊗ (•∗)degz

](
∑

w′,z′∈B
η

w′z′
x w′⊗ z′

)
= ∑η

w′z′
x ηdegw(w′)ηdegz(z′)

where the last sum is over all w′ ∈ Bdegw,z′ ∈ Bdegz, because on all other summands,

(•∗)degw⊗(•∗)degz evaluates to 0. The coproduct structure constants ηw′z′
x are non-negative,

and, by inductive hypothesis, ηdegw(w′),ηdegz(z′) > 0. So all summands above are non-

negative and the summand ηwz
x ηdegw(w′)ηdegz(z′) is positive, so the sum is positive.

To see Part ii, it suffices to show that η ′n(x) = 0 for η ′ belonging to the basis in Theorem

2.6.2 of the eigenspace of Ψa : H ∗
n →H ∗

n of highest eigenvalue. Such basis eigenvectors
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have the form η ′ = ∑σ∈Sn c∗
σ(1) . . .c

∗
σ(n) for some c∗1, . . . ,c

∗
n ∈H ∗

1 . Now, because multipli-

cation in H ∗ is dual to comultiplication in H ,

η
′(x) =

(
∑

σ∈Sn

c∗
σ(1) . . .c

∗
σ(n)

)
(x)

= ∑
σ∈Sn

(
c∗

σ(1)⊗·· ·⊗ c∗
σ(n)

)
(∆[n]x)

= ∑
σ∈Sn

c∗
σ(1)(x)⊗ c∗

σ(2)(1)⊗·· ·⊗ c∗
σ(n)(1)

+ c∗
σ(1)(1)⊗ c∗

σ(2)(x)⊗ c∗
σ(3)(1)⊗·· ·⊗ c∗

σ(n)(1)+ . . .

+ c∗
σ(1)(1)⊗·· ·⊗ c∗

σ(n−1)(1)⊗ c∗
σ(n)(x)

= 0,

since c∗
σ(i)(x), c∗

σ(i)(1) are all zero by degree considerations. (The third equality used that

x is primitive.)

Example 4.3.8. Work in the algebra Λ of symmetric functions, and take B to be the power

sums, as described in Example 4.1.5. So B3 = {p3
1, p1 p2, p3} and ∆(pn) = 1⊗ pn+ pn⊗1

for each n. By explicit computation,

K2,3 := [2−3m∆]TB3
=


1 0 0

0 1
2 0

0 0 1
4

 .
Simply rescaling the basis B3 cannot make the rows of this matrix sum to 1, as rescaling

the basis does not change the diagonal entries, and can only change non-zero non-diagonal

entries.

It is easy to see how this problem generalises: for any primitive element x ∈Bn, it hap-

pens that m∆(x) = 2x, so the row corresponding to x in K2,n is 2−n+1 in the main diagonal

and zeroes elsewhere. Then this row sum cannot change under basis rescaling.
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To end this section, here is a brief word on how to modify the above notions for the

case where H1 = /0. As in Section 2.6, set D := {d > 0|Hd 6= /0}, D ′ = {d ∈ D |d 6=
d1 +d2 with d1,d2 ∈D}, so

⊕
d∈D ′Hd consists solely of primitive elements. Then define

B to be a state space basis if it contains no primitive elements outside of
⊕

d∈D ′Hd . For

each n∈D , let K(n) denote the maximal length of a D ′-partition of n, so, by Theorem 2.6.4,

aK(n) is the largest eigenvalue of Ψa : Hn→Hn. Then the value of the rescaling function

ηn(x) should be the sum of the coefficients of ∆̄[K(n)](x), and the transition matrix of the

Hopf-power Markov chain is Ǩa,n :=
[
a−K(n)Ψa

]T

B̌n
, where B̌n :=

{
x̌ := x

ηn(x)
|x ∈Bn

}
.

4.4 Description of a Hopf-power Markov chain

Definition 4.3.4 gives the exact transition probabilities of a Hopf-power Markov chain, but

this is not very enlightening without an intuitive description of the chain. Such descrip-

tions can be very specific to the underlying Hopf algebra (see Theorem 5.3.8 regarding

tree-pruning). The starting point to finding these interpretations is Theorem 4.4.1, which

separates each timestep of the chain into breaking (steps 1 and 2) and recombining (step 3).

The probabilities involved in both stages are expressed in terms of the structure constants

of H and the rescaling function η .

Theorem 4.4.1 (Three-step description for Hopf-power Markov chains). A single step of

the ath Hopf-power Markov chain, starting at x ∈Bn, is equivalent to the following three-

step process:

1. Choose a composition (i1, . . . , ia) of n (that is, non-negative integers with i1 + · · ·+
ia = n) according to the multinomial distribution with parameter 1/a. In other words,

choose (i1, . . . , ia) with probability a−n( n
i1...ia

)
.

2. Choose z1 ∈Bi1,z2 ∈Bi2, . . . ,za ∈Bia with probability 1
η(x)η

z1,...,za
x η(z1) . . .η(za).

3. Choose y ∈Bn with probability
(( n

degz1...degza

)
η(z1) . . .η(za)

)−1
ξ

y
z1,...,zaη(y).

Example 4.4.2. Applying Theorem 4.4.1 to the shuffle algebra S recovers the description

of the a-handed shuffle at the start of Section 4.1. Since the coproduct on S is decon-

catenation, the coproduct structure constant η
z1,...,za
x = 0 unless x is the concatenation of
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z1,z2, . . . ,za in that order, so there is no choice at step 2. Hence steps 1 and 2 combined

correspond to a multinomially-distributed cut of the deck. As for step 3: η(y) = 1 for all

y, so y is chosen with probability proportional to ξ
y
z1,...,za , the number of ways to interleave

z1, . . . ,za to obtain y. Hence all interleavings are equally likely.

Example 4.4.3. How does Theorem 4.4.1 interpret the chain on the irreducible represen-

tations of the symmetric groups? Recall from Example 4.1.4 that the product is external

induction and the coproduct is restriction. For simplicity, first take a = 2. Then, starting

at a representation x of Sn, the first step is to binomially choose an integer i between 0

and n. It turns out that a cleaner description emerges if steps 2 and 3 above are combined.

This merged step is to choose an irreducible representation y with probability proportional

to ∑η
z1z2
x ξ

y
z1z2η(y), where the sum is over all irreducible representations z1 of Si, and z2

of Sn−i. Now ∑η
z1z2
x ξ

y
z1z2 is the coefficient or the multiplicity of the representation y in

IndSn
Si×Sn−i

ResSn
Si×Sn−i

(x), and Example 4.3.2 showed that η(y) = dimy. So the product of

these two numbers have a neat interpretation as the dimension of the y isotypic component.

So, for general a, the chain on irreducible representations of the symmetric group has

the following description:

1. Choose a Young subgroup Si1 × ·· · ×Sia according to a symmetric multinomial

distribution.

2. Restrict the starting state x to the chosen subgroup, induce it back up to Sn, then

pick an irreducible constituent with probability proportional to the dimension of its

isotypic component.

A similar interpretation holds for other Hopf-power Markov chains on Hopf algebras

of representations of other towers of algebras. For this particular case with the symmetric

groups, this representation Hopf algebra is isomorphic to the cohomology of the infinite

Grassmannian: the product is cup product, and the coproduct comes from a product on the

infinite Grassmannian, which is taking direct sums of the subspaces. This isomorphism

sends the basis B of irreducible representations to the Schubert classes. So perhaps the

restriction-then-induction chain on irreducible representations has an alternative interpre-

tation in terms of decomposing a Schubert variety in terms of smaller Grassmannians, then

taking the intersection.
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A variant of this restriction-then-induction chain, where the choice of Young subgroup

is fixed instead of random, appears in [Ful05]. There, it generates central limit theorems

for character ratios, via Stein’s method.

Proof of Theorem 4.4.1, the three-step description. First check that the probabilities in step

2 do sum to 1:

∑
z1∈Bi1 ,...,za∈Bia

η
z1,...,za
x η(z1) . . .η(za)

=
(
(•∗)i1⊗·· ·⊗ (•∗)ia

) ∑
z1∈Bi1 ,...,za∈Bia

η
z1,...,za
x z1⊗·· ·⊗ za


=
(
(•∗)i1 . . .(•∗)ia

)
(∆a(x))

=(•∗)n (x)

=η(x)

where the first equality uses Definition 4.3.1.iii of the rescaling function ηx, the second

equality is because (•∗)i (x j) = 0 if deg(x j) 6= i, and the third equality is by definition of

the product of H ∗. And similarly for the probabilities in step 3, the combining step:

∑
y∈Bn

ξ
y
z1,...,za

η(y) = (•∗)n

(
∑

y∈Bn

ξ
y
z1,...,za

y

)
= (•∗)n (z1 . . .za)

= ∆
a((•∗)n)(z1⊗·· ·⊗ za)

=

(
∑

i1,...,in

(
n

i1 . . . ia

)
(•∗)i1⊗·· ·⊗ (•∗)ia

)
(z1⊗·· ·⊗ za)

=

(
n

degz1 . . .degza

)
η(z1) . . .η(za).
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Finally, the probability of moving from x to y under the three-step process is

∑
z1...za

a−n
(

n
degz1 . . .degza

)
η

z1,...,za
x η(z1) . . .η(za)

η(x)
ξ

y
z1,...,zaη(y)( n

degz1...degza

)
η(z1) . . .η(za)

=a−n
∑

z1,...,za

η(y)
η(x)

ξ
x
z1,...,za

η
z1,...,za
y

=Ǩa,n(x,y).

4.5 Stationary Distributions

The theorem below classifies all stationary distributions of a Hopf-power Markov chain;

they have a simple expression in terms of the product structure constants and the rescaling

function η of Definition 4.3.1.

Theorem 4.5.1 (Stationary distribution of Hopf-power Markov chains). Follow the nota-

tion of Definition 4.3.4. Then, for each multiset {c1, . . . ,cn} in B1, the function

πc1,...,cn(x) :=
η(x)
n!2 ∑

σ∈Sn

ξ
x
cσ(1),...,cσ(n)

is a stationary distribution for the ath Hopf-power Markov chain on Bn, and any stationary

distribution of this chain can be uniquely written as a linear combination of these πc1,...,cn .

In particular,

(i) if B1 = {•}, then

πn(x) :=
η(x)

n!
ξ

x
•,...,•

is the unique stationary distribution of the chain on Bn;
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(ii) if H is multigraded (H =
⊕

ν Hν , B = qνBν ) and B(1,0,...,0) = {•1},
B(0,1,0,...,0) = {•2} and so on, then

πν(x) :=
η(x)
n!2 ∑

σ∈Sn

ξ
x
cσ(1),...,cσ(n)

with c1 = c2 = · · ·= cν1 = •1, cν1+1 = · · ·= cν1+ν2 = •2, etc. is the unique stationary

distribution of the chain on Bν ;

and these are also necessary conditions.

Intuitively, the sum of product structure constants ∑σ∈Sn ξ x
cσ(1),...,cσ(n)

counts the ways

that x can be assembled from c1, . . . ,cn in any order. So πc1,...,cn(x) is proportional to the

number of ways to assemble x from c1, . . . ,cn, and then repeatedly break it down into

objects of size 1.

Proof. First, show that πc1,...,cn is a probability distribution. As remarked in the proof

of Lemma 4.2.1, ξ x
cσ(1),...,cσ(n)

≥ 0, so πc1,...,cn is a non-negative function. To see that

∑x∈Bn πc1,...,cn(x) = 1, appeal to the second displayed equation of the proof of Theorem

4.4.1. Taking a = n, it shows that, for each σ ∈Sn,

∑
x∈Bn

ξ
x
cσ(1),...,cσ(n)

η(x) =
(

n
degcσ(1) . . .degcσ(n)

)
η(c1) . . .η(cn) = n! ·1 · · · · ·1.

Next, recall that the stationary distributions are the left eigenfunctions of the tran-

sition matrix of eigenvalue 1. So, by Proposition 3.2.1.L, it suffices to show that

∑x∈Bn πc1,...,cn(x)
x

η(x) = ∑σ∈Sn cσ(1) . . .cσ(n) is a basis for the an-eigenspace of Ψa. This is

precisely the assertion of 2.6.2.

Finally, the two uniqueness results are immediate by taking the sole choice of cis.

The first example below describes the typical behaviour when B1 = {•} and B is a

free-commutative basis: the unique stationary distribution is concentrated at a single state.

Such a chain is said to be absorbing, and Sections 5.1.3 and 5.1.4 give some methods for

estimating the probability of absorption after a given time.
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Example 4.5.2. Continue with the edge-removal chain of Example 4.2.3, which arises from

the Hopf algebra Ḡ of graphs. Here, the only element of B1 is the graph • with a single

vertex. So Part i of Theorem 4.5.1 applies, and the unique stationary distribution is

πn(x) =
η(x)

n!
ξ

x
•,...,•,

which is the point mass at the graph with no edges. This is because the structure constant

ξ x
•,...,• is 0 for all other graphs x. Indeed, one would expect after many steps of this chain,

that all edges would be removed.

Example 4.5.3. Continuing from Example 4.1.4, take H to be the representation rings of

the symmetric groups. The only irreducible representation of S1 is the trivial representa-

tion, so again Theorem 4.5.1.i above applies. Now •n is the induced representation from

S1× ·· ·×S1 to Sn of the trivial representation, which gives the regular representation.

So ξ x
•,...,• is the multiplicity of the irreducible representation x in the regular representa-

tion, which is dimx. Recall from Example 4.3.2 that the rescaling constant η(x) is also

dimx. Thus the unique stationary distribution of this restriction-then-induction chain is

πn(x) = 1
n!2 (dimx)2. This is the well-studied Plancherel measure. It appears as the distri-

bution of partitions growing one cell at a time under the Plancherel growth process [Ker99].

[Oko00] identifies its limit as n→∞, suitably rescaled, with the distribution of eigenvalues

of a Gaussian random Hermitian matrix; the proof involves some combinatorially flavoured

topology and illuminates a connection to the intersection theory on moduli spaces of curves.

Example 4.5.4. Consider S(1,1,...,1), the degree (1,1, . . . ,1) subspace of the shuffle algebra.

This corresponds to riffle-shuffling a distinct deck of cards. Use Theorem 4.5.1.ii with

ci = (i). It is clear that, for each word x in S(1,...,1), there is a unique way to interleave

(1),(2), . . . ,(n) to obtain x. So ξ x
(1),...,(n) = 1, and by commutativity, ξ x

(σ(1)),...,(σ(n)) = 1

for all permutations σ . Recall also that η(x) = 1 for all words. So the unique stationary

distribution for riffle-shuffling is the uniform distribution π(x)≡ 1
n! .

All the chains appearing in this thesis have unique stationary distributions. For an ex-

ample of a Hopf-power Markov chain with several absorbing states, see Pineda’s example

on the Hopf monoid of permutohedra [Pin14].
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4.6 Reversibility

Recall from Section 3.3 that the time-reversal of a Markov chain from a linear map is given

by the dual map. As observed in Section 2.1, the dual map to Ψa : Hn→Hn is the Hopf-

power map on the dual Hopf algebra, Ψa : H ∗
n →H ∗

n . Thus Theorem 3.3.2 specialises to

the following for Hopf-power chains:

Theorem 4.6.1 (Time-reversal of Hopf-power Markov chains). Let H be a graded, con-

nected Hopf algebra over R with state space basis B satisfying B = {•} (or H is multi-

graded and B(1,0,...,0) = {•1} ,B(0,1,0,...,0) = {•2} and so on). Suppose in addition that,

for all y ∈B with deg(y) > 1, there is some w,z ∈B with deg(w),deg(z) > 0 such that

ξ
y
wz 6= 0. Then the time-reversal of the ath Hopf-power Markov chain on Bn (or Bν ) is

the ath Hopf-power Markov chain on the dual basis B∗n (or B∗ν ) of the (graded) dual Hopf

algebra H ∗.

Note the the condition ξ
y
wz 6= 0 is equivalent to B∗ being a state space basis, since

dualising the Hopf algebra simply exchanges the product and coproduct structure constants:

ξ
x∗
w∗z∗ = η

wz
x ; η

w∗z∗
y∗ = ξ

y
wz.

Then, applying Theorem 4.3.7.i to H ∗ implies ξ
y
•,...,• > 0 for all y ∈B. So the stationary

distribution of the Hopf-power chain on H is nowhere zero, and the time-reversal chain is

indeed defined.

Example 4.6.2. Recall from Example 2.1.2 that the dual of the shuffle algebra S is the

free associative algebra S ∗, with concatenation product and deshuffling coproduct. Its

associated Hopf-square Markov chain has this interpretation in terms of decks of cards:

uniformly and independently assign each card to the left or right pile, keeping cards which

land in the same pile in the same relative order, then put the left pile on top of the right pile.

This agrees with the description of inverse shuffling of [BD92, Sec. 3].

The final result of Section 3.3 states that, if Ψ is self-adjoint with respect to an inner

product where the state space basis is orthogonal, and if a Ψ-Markov chain has a well-

defined time-reversal, then this chain is reversible. The condition that the Hopf-power be
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self-adjoint is a little odd; a stronger but more natural hypothesis is that the product and

coproduct are adjoint, in the manner described below.

Theorem 4.6.3 (Reversibility of Hopf-power Markov chains). Let H be a graded, con-

nected Hopf algebra over R equipped with an inner product 〈,〉 adjoining product and

coproduct, that is, 〈wz,x〉 = 〈w⊗ z,∆(x)〉. (Here, 〈w⊗ z,a⊗ b〉 = 〈w,a〉〈z,b〉.) Let B be

a state space basis of H which is orthogonal under this inner product, with B1 = {•}
(or H is multigraded and B(1,0,...,0) = {•1} ,B(0,1,0,...,0) = {•2} and so on). Assume in

addition that, for all y∈B with deg(y)> 1, there is some w,z∈B with deg(w),deg(z)> 0

such that ξ
y
wz 6= 0. Then the ath Hopf-power Markov chain on Bn (or Bν ) is reversible.

Zelevinsky’s classification [Zel81, Th. 2.2, 3.1] of positive self-dual Hopf algebras says

that, if one restricts to Hopf algebras with integral structure constants, then the example

below is essentially the only chain satisfying the hypothesis of Theorem 4.6.3 above.

Example 4.6.4. Equip the representation rings of the symmetric group with the usual inner

product where the irreducible representations are orthonormal. (This is equivalent to the

Hall inner product of symmetric functions, see [Sta99, Sec. 7.9].) That this inner product

adjoins the multiplication and comultiplication is simply Frobenius reciprocity:

〈IndSi+ j
Si×S j

w× z,x〉= 〈w⊗ z,ResSi+ j
Si×S j

x〉.

(Note that, if w,z are representations of Si,S j respectively, then 〈w⊗z,ResSi+ j
Sk×Si+ j−k

x〉= 0

unless k = i.) As calculated in Example 4.5.3, the associated restriction-then-induction

chain has a unique stationary distribution given by the Plancherel measure π(x) = dimx2

n! >

0. So this chain is reversible.

4.7 Projection

Recall the mantra of Section 3.4: intertwining maps give rise to projections of Markov

chains. For Hopf-power Markov chains, the natural maps to use are Hopf-morphims. A

linear map θ : H → H̄ is a Hopf-morphism if θ(1) = 1, deg(θ(x)) = deg(x), θ(w)θ(z) =
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θ(wz) and ∆(θ(x)) = (θ ⊗θ)(∆(x)) for all x,w,z ∈H . Then

θ(m∆(x)) = m(θ ⊗θ)(∆(x)) = m∆(θ(x)),

so θ intertwines the Hopf-square maps on H and on H̄ . Indeed, a simple (co)associativity

argument shows that θm[a] = m[a]θ⊗a and θ⊗a∆[a] = ∆[a]θ for all a, so θΨa
H = Ψa

H̄
θ .

(Note that Ψa is not a Hopf-morphism in general.)

Specialising Theorem 3.4.1, concerning projections of chains from linear maps, to the

Hopf-power map, gives the following:

Theorem 4.7.1 (Projection Theorem for Hopf-power Markov Chains). Let H , H̄ be

graded, connected Hopf algebras over R with bases B, B̄ respectively. Suppose in ad-

dition that B is a state space basis. If θ : H → H̄ is a Hopf-morphism such that

θ(Bn) = B̄n for some n, and θ(B1) ⊆ B̄1, then the Hopf-power Markov chain on B̄n

is the projection via θ of the Hopf-power Markov chain on Bn.

Remarks.

1. As in the more general Theorem 3.4.1, the condition θ(Bn) = B̄n does not mean

that the restriction θ : Hn→ H̄n is an isomorphism. Although θ must be surjective

onto B̄n, it need not be injective - the requirement is simply that distinct images of

Bn under θ are linearly independent.

2. The theorem does not require θ(Bn) = B̄n to hold for all n. Section 6.2.3, regarding

the descent sets under riffle-shuffling, is an important example where the domain H

is multigraded, and θ(Bν) = B̄|ν | for only certain values of ν .

3. The proof will show that the weaker assumption θ(B1) ⊆ αB̄1 :=
{

α c̄|c̄ ∈ B̄1
}

is

sufficient. (Here, α can be any non-zero constant.)

Proof. As discussed before the statement of the theorem, θΨa
H = Ψa

H̄
θ . So it suffices to

show that the condition θ(B1)⊆ B̄1 guarantees η(x) = η(θ(x)) for all x∈Bn. Then The-

orem 3.4.1, concerning projections of chains from linear maps, applies to give the desired

result.
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Let n = degx = deg(θ(x)). Recall that the rescaling function η(x) is the sum of the

coefficients of ∆̄[n](x) when expanded in the basis B⊗n
1 :

η(x) = ∑
c1,...,cn∈B1

η
c1,...,cn
x ,

so

η(θ(x)) = ∑
c1,...,cn∈B̄1

η
c1,...,cn
θ(x) .

Now expanding the equality ∆̄[n](θ(x)) = θ⊗n(∆̄[n](x)) in the basis B⊗n
1 gives:

∑
c̄1,...,c̄n∈B̄1

η
c̄1,...,c̄n
θ(x) c̄1⊗·· ·⊗ c̄n = θ

⊗n

(
∑

c1,...,cn∈B1

η
c1,...,cn
x c1⊗·· ·⊗ cn

)
= ∑

c1,...,cn∈B1

η
c1,...,cn
x θ(c1)⊗·· ·⊗θ(cn)

= ∑
c̄1,...,c̄n∈B̄1

(
∑

c1,...,cn,θ(ci)=c̄i

η
c1,...,cn
x

)
c̄1⊗·· ·⊗ c̄n,

where the last equality uses the assumption θ(ci) ∈B1. So the coefficient sums of the left

and right hand sides are equal, and these are η(θ(x)) and η(x) respectively.

Example 4.7.2. Work in S ∗, the free associative algebra introduced in Example 2.1.2,

where the product of two words is their concatenation, and the coproduct is deshuffle. As

seen in Example 4.6.2, the associated Hopf-power Markov chain describes inverse riffle-

shuffling: randomly place each card on the left or right pile, then place the left pile on top of

the right. Let S̄ ∗ be the quotient of S ∗, as an algebra, by the relations {i j = ji| |i− j|> 1}.
Then S̄ ∗ is one example of a free partially commutative algebra of [Sch90], based on the

free partially commutative monoids of [CF69]. The technical Lemmas 4.7.4 and 4.7.5

below prove respectively that the quotient map S ∗→ S̄ ∗ is a map of Hopf algebras, and

that this map sends the basis of words of S ∗ to a basis of S̄ ∗. Thus this quotient map

shows that inverse riffle-shuffling while forgetting the orders of cards with nonconsecutive

values is a Markov chain. For example, this would identify (231124) with (213412). When

all cards in the deck are distinct, this amounts to keeping track only of whether card 1 is



CHAPTER 4. CONSTRUCTION AND BASIC PROPERTIES 75

above or below card 2, whether card 2 is above or below card 3, etc. This statistic is known

as the idescent set (or recoil):

ides(w) = {i|i+1 occurs before i in w}

as it is the descent set of the inverse of w, when regarding w as a permutation in one-line

notation. The projection of inverse riffle-shuffling by idescent set is studied in [AD10, Ex.

5.12.ii].

The same construction goes through for other sets of commutation relations. Specif-

ically, let G be a graph with vertex set {1,2, . . .} and finitely-many edges, and set S̄ ∗
G

to be the quotient of S ∗, as an algebra, by the relations {i j = ji|(i, j) not an edge of G}.
Thus the edges of G indicate noncommuting pairs of letters in S̄ ∗

G. The example above,

where only nonconsecutive values commute, corresponds to a path. The Lemmas below

show that, for any graph G, the quotient map θG : S → S̄ ∗
G satisfies the conditions of

the Projection Theorem, so these maps all give Markov statistics for inverse shuffling. To

interpret these statistics, appeal to [KMLR82, Prop. 2]. For a word w, let wi j denote the

subword of w obtained by deleting all letters not equal to i or j. Thus (231124)12 = (2112),

(231124)23 = (232). Then their proposition asserts that θG(w) is recoverable from the set

of wi j over all edges (i, j) of G. To summarise:

Theorem 4.7.3. Let G be a graph with vertex set {1,2, . . .} and finitely-many edges. For

a deck of cards w, let wi j be the subdeck obtained by throwing out all cards not labelled

i or j. Then the set of all wi j over all edges (i, j) of G is a Markov statistic under inverse

shuffling.

Below are the promised technical Lemmas necessary to establish this result.

Lemma 4.7.4. Let G be a graph with vertex set {1,2, . . .} and finitely-many

edges. Denote by IG the ideal in the free associative algebra S ∗ generated

by {i j − ji|(i, j) not an edge of G}. Then IG is also a coideal, (i.e.

∆(IG)⊆S ∗⊗ IG + IG⊗S ∗), so the quotient S̄ ∗
G := S ∗/IG is a Hopf algebra.

Proof. Since ∆ is linear and ∆(xy) = ∆(x)∆(y), it suffices to check the coideal condition

only on the generators of IG, that is, that ∆(i j− ji) ⊆S ∗⊗ IG + IG⊗S ∗ whenever (i, j)
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is not an edge of G. Now

∆(i j− ji) = ∆(i)∆( j)−∆( j)∆(i)

= (1⊗ i+ i⊗1)(1⊗ j+ j⊗1)− (1⊗ j+ j⊗1)(1⊗ i+ i⊗1)

= 1⊗ i j+ j⊗ i+ i⊗ j+ i j⊗1− (1⊗ ji+ i⊗ j+ j⊗ i+ ji⊗1)

= 1⊗ i j+ i j⊗1−1⊗ ji− ji⊗1

= 1⊗ (i j− ji)+(i j− ji)⊗1

⊆S ∗⊗ IG + IG⊗S ∗.

Lemma 4.7.5. Let θG : S ∗→ S̄ ∗
G be the quotient map, by the ideal IG in Lemma 4.7.4

above. Write B the basis of words in the free associative algebra S ∗. Then B̄ := θG(B)

is a basis of S̄ ∗
G.

Proof. (The main idea of this proof arose from a discussion with Zeb Brady.) Clearly B̄

spans S̄ ∗
G, so the only issue is linear independence. This will follow from

IG = J :=

a1b1 + · · ·+ambm|bi ∈B, ∑
i:θG(bi)=b̄

ai = 0 for each b̄ ∈ B̄

 .

The quotient map θG clearly sends each element of J to 0, so J ⊆ kerθG = IG. To see

IG ⊆ J, it suffices to show that J is an ideal containing the generators i j− ji of IG. First, J is

clearly closed under addition. J is closed under multiplication by elements of S ∗ because,

for any letter c (i.e. any generator of S ∗), c(a1b1 + · · ·+ambm) = a1(cb1)+ · · ·+am(cbm)

with each cbi ∈B, and, if θG(bi) = θG(b j), then θG(cbi) = θG(cb j). Lastly, if (i, j) is not

an edge of G, then θG(i j) = θG( ji), so i j− ji ∈ J.



Chapter 5

Hopf-power Markov chains on
Free-Commutative Bases

This chapter concentrates on a class of Hopf-power Markov chains whose behaviour is

“simple” in two ways, thanks to the additional hypothesis that the state space basis is free-

commutative, as defined below.

Definition (Free generating set, free-commutative basis). Let H be a graded connected

commutative Hopf algebra over R. Then the dual Cartier-Milnor-Moore theorem [Car07,

Th. 3.8.3] states that H is isomorphic as an algebra to the polynomial algebra R[c1,c2, . . . ]

for some elements ci, which may have any degree. (In fact, it suffices that the base field be

of characteristic 0.) The set C := {c1,c2, . . .} is a free generating set for H , and the basis

B = {c1 . . .cl|l ∈ N,{c1, . . . ,cl} a multiset in C }, consisting of all products of the cis, is a

free-commutative basis.

One can think of a free-commutative basis as the basis of monomials in the ci, but

this thesis prefers to reserve the terminology “monomial” for analogues of the monomial

symmetric functions, which are cofree.

An archetypal chain on a free-commutative basis is the edge-removal of graphs (or in-

deed the analogous construction for any species-with-restrictions, as discussed in Section

4.1.1). Specialising to disjoint unions of complete graphs gives the independent multino-

mial breaking of rocks, as discussed in Section 5.2.

77
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Example (Edge-removal of graphs). Recall from Examples 4.1.3 and 4.2.3 the Hopf alge-

bra Ḡ of graphs: the degree deg(G) of a graph G is its number of vertices, the product of

two graphs is their disjoint union, and the coproduct is

∆(G) = ∑GS⊗GSC

where the sum is over all subsets S of the vertex set of G, and GS,GSC denote the subgraphs

that G induces on the vertex set S and its complement. The set B of all graphs is a free-

commutative basis, and the free generating set C consists of the connected graphs.

The ath Hopf-power Markov chain describes edge-removal: at each step, assign uni-

formly and independently one of a colours to each vertex, and remove the edges connecting

vertices of different colours. There is no need to rescale the state space basis B to define

this chain: for all graphs G with n vertices, the rescaling function η(G) counts the ways

to break G into n (ordered) singletons, of which there are n!, irrespective of G. An easy

application of Theorem 4.5.1 shows that its unique stationary distribution takes value 1 on

the graph with no edges and 0 on all other states, so the chain is absorbing.

The first “simplicity” feature of this edge-removal chain is that each connected compo-

nent behaves independently. Section 5.1.1 explains the analogous behaviour for all chains

on a free-commutative basis as a consequence of the Hopf-power map Ψa being an algebra

homomorphism, since the underlying Hopf algebra is commutative. The second aspect of

interest is that the edge-removal chain never returns to a state it has left. Indeed, at each

step the chain either stays at the same graph or the number of connected components in-

creases. Section 5.1.2 will show that a Hopf-power Markov chain on a free-commutative

state space basis always has a triangular transition matrix; then, applying Perron-Frobenius

to each minor gives right eigenfunctions that are non-negative in the first few coordinates

and zero in the last coordinates. Section 5.1.3 identifies these as the output of Theorem

2.5.1.B, and outlines how they give upper bounds for the probability of being “far from

absorbed”. Section 5.1.4 then repackages the exact probabilities in terms of a “generalised

chromatic quasisymmetric function” constructed in [ABS06], though this is a theoretical

discussion only as I have no effective way to compute or bound such functions. This ap-

pears to require weaker hypotheses than a free-commutative state space basis, but it is
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unclear whether there are non-free-commutative state space bases that satisfy the weaker

hypotheses, nor what the conclusions mean in this more general setup.

Sections 5.2 and 5.3 apply these techniques to a rock-breaking and tree-pruning pro-

cess respectively, arising from the algebra of symmetric functions and the Connes-Kreimer

algebra of rooted forests.

5.1 General Results

5.1.1 Independence

The following theorem converts the fact that Ψa is an algebra homomorphism into “in-

dependent breaking” of the Hopf-power Markov chain if the starting state is a product.

For example, in the Hopf algebra Ḡ of graphs, a graph is the product of its connected

components, so the associated edge-removal Markov chain behaves independently on each

connected component. As a result, to understand a Hopf-power Markov chain on a free-

commutative basis, it suffices to describe one step of the chain starting only from the gen-

erators, i.e. to apply Theorem 4.4.1, the three-step interpretation, only to states which are

not products.

Theorem 5.1.1. Let x1,x2 ∈B, a free-commutative state space basis. Then one step of the

ath Hopf-power Markov chain on B starting at x := x1x2 is equivalent to the following:

take one step of the ath Hopf-power Markov chain from x1 and from x2, and move to the

product of the results.

Proof. Let n,n1,n2 be the degrees of x,x1,x2 respectively. By definition, the probability of

moving from x to y in the ath Hopf-power Markov chain is

Ǩa,n(x,y) = y∗(a−n
Ψ

a(x))
η(y)
η(x)

.
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So the probability of moving from x to y under the composite process described in the

theorem is

∑
y1y2=y

Ǩa,n1(x1,y1)Ǩa,n2(x2,y2)

= ∑
y1y2=y

y∗1(a
−n1Ψ

a(x1))
η(y1)

η(x1)
y∗2(a

−n2Ψ
a(x2))

η(y2)

η(x2)
.

Since B is a free-commutative basis, the structure constant ξ
y
y1y2 is 1 if y1y2 = y, and 0

otherwise. So the above probability is

∑
y1∈Bn1 y2∈Bn2

ξ
y
y1y2

(y∗1⊗ y∗2)(a
−n

Ψ
a(x1)⊗Ψ

a(x2))
η(y1)

η(x1)

η(y2)

η(x2)

=∆
∗(y)(a−n

Ψ
a(x1)⊗Ψ

a(x2))
η(y1)

η(x1)

η(y2)

η(x2)

=y∗(a−n
Ψ

a(x1)Ψ
a(x2))

η(y1)

η(x1)

η(y2)

η(x2)

=y∗(a−n
Ψ

a(x1x2))
η(y1)

η(x1)

η(y2)

η(x2)
.

The last step uses that Ψa is an algebra homomorphism since the Hopf algebra is commu-

tative. Lemma 5.1.2 below shows that η(y1)
η(x1)

η(y2)
η(x2)

= η(y1y2)
η(x1x2)

= η(y)
η(x) , so this probability is

indeed Ǩa,n(x,y).

Lemma 5.1.2. The rescaling function η satisfies

η(x1x2) =

(
deg(x1x2)

deg(x1)

)
η(x1)η(x2).

In other words, η(x)
(degx)! is multiplicative.

Proof. There is a short proof via η(x) = (•∗)degx, but the enumerative argument here is

more transparent and more versatile - similar lines of reasoning lie behind Proposition

5.1.13 and (to a lesser extent) Theorems 5.3.6 and 5.3.10.
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Write n,n1,n2 for the degrees of x,x1,x2 respectively. η(x1x2) is the sum of the coeffi-

cients of ∆̄[n](x1x2). The Hopf axiom ∆(x1x2) = ∆(x1)∆(x2) gives the following bijection:

{
terms in

∆̄[n](x1x2)

}
↔

{
terms in

∆̄[n1](x1)

}
×

{
terms in

∆̄[n2](x2)

}
×


choices of n1 tensor-factors

amongst n to place

the term from ∆̄[n](x1)

 .

Taking coefficients of both sides recovers the lemma.

5.1.2 Unidirectionality

Call a Markov chain unidirectional if it cannot return to any state it has left. (The term

“unidirectional” is a suggestion from John Pike, since “monotone” and “acyclic” already

have technical meanings in Markov chain theory.) An equivalent phrasing is that the state

space is a poset under the relation “is accessible from”. Yet another characterisation of a

unidirectional chain is that its transition matrix is triangular for some suitable ordering of

the states.

The edge-removal chain at the start of this chapter is unidirectional as the chain either

stays at the current graph, or the number of connected components increases. Corollary

5.1.5 below shows that this phenomenon occurs for all Hopf-power Markov chains on a

free-commutative basis. The generalisation of “number of connected components” is the

length: for x ∈ B, its length l(x) is the number of factors in the factorisation of x into

generators. Lemma 5.1.3 below explains the way the length changes under product and

coproduct. It requires one more piece of notation: define x→ x′ for x,x′ ∈B if x′ appears

in Ψa(x) (when expanded in the basis B) for some a. This is precisely the relation “is

accessible from” discussed in the previous paragraph.

Lemma 5.1.3. Let x,y,xi,x(i) be elements of a free-commutative basis. Then

(i) l (x1 . . .xa) = l (x1)+ · · ·+ l (xa);

(ii) For any summand x(1)⊗·· ·⊗ x(a) in ∆[a](x), l
(
x(1)
)
+ · · ·+ l

(
x(a)
)
≥ l(x);

(iii) if x→ y, then l(y)≥ l(x).
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Proof. (i) is clear from the definition of length.

Prove (ii) by induction on l(x). Note that the claim is vacuously true if x is a generator,

as each l
(
x(i)
)
≥ 0, and not all l

(
x(i)
)

may be zero. If x factorises non-trivially as x = st,

then, as ∆[a](x)=∆[a](s)∆[a](t), it must be the case that x(i)= s(i)t(i), for some s(1)⊗·· ·⊗s(a)
in ∆[a](s), t(1)⊗ ·· ·⊗ t(a) in ∆[a](t). So l

(
x(1)
)
+ · · ·+ l

(
x(a)
)
= l
(
s(1)
)
+ · · ·+ l

(
s(a)
)
+

l
(
t(1)
)
+ · · ·+ l

(
t(a)
)

by (i), and by inductive hypothesis, this is at least l(s)+ l(t) = l(x).

(iii) follows trivially from (i) and (ii): if x→ y, then y = x(1) . . .x(a) for a term x(1)⊗
·· ·⊗ x(a) in ∆[a](x). So l(y) = l

(
x(1)
)
+ · · ·+ l

(
x(a)
)
≥ l(x).

Here is the algebraic fact which causes unidirectionality; the proof is four paragraphs

below.

Proposition 5.1.4. Let H be a Hopf algebra with free-commutative basis B, where all

coproduct structure constants ηwz
x are non-negative. Then the relation→ defines a partial

order on B, and the partial-ordering by length refines this partial-order: if x→ y and

x 6= y, then l(x)< l(y). Furthermore, for any integer a and any x ∈B,

Ψ
a(x) = al(x)x+ ∑

l(y)>l(x)
αxyy

for some αxy ≥ 0.

The probability consequence is immediate from Definition 4.3.4 of a Hopf-power

Markov chain:

Corollary 5.1.5. Let {Xm} be the ath Hopf-power Markov chain on a free-commutative

basis Bn. Then

P{Xm+1 = x|Xm = x}= al(x)−n,

and P{Xm+1 = y|Xm = x} is non-negative only if l(y)≥ l(x).

In other words, if the states are totally ordered to refine the partial-ordering by length,

then the transition matrices are upper-triangular with al−n on the main diagonal. In partic-

ular, states with length n are absorbing - which also follows from the stationary distribution

expressions in Theorem 4.5.1. These states are precisely the products of elements of B1.
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Proof of Proposition 5.1.4. It is easier to first prove the expression for Ψa(x). Suppose x

has factorisation into generators x = c1c2 . . .cl(x). As H is commutative, Ψa is an algebra

homomorphism, so Ψa(x) = Ψa (c1) . . .Ψ
a (cl(x)

)
. Recall from Section 2.2 that ∆̄(c) =

∆(c)− 1⊗ c− c⊗ 1 ∈
⊕deg(c)−1

i=1 Hi⊗Hdeg(c)−i, in other words, 1⊗ c and c⊗ 1 are the

only terms in ∆(c) which have a tensor-factor of degree 0. As ∆[3] = (ι ⊗∆)∆, the only

terms in ∆[3](c) with two tensor-factors of degree 0 are 1⊗ 1⊗ c, 1⊗ c⊗ 1 and c⊗ 1⊗ 1.

Inductively, we see that the only terms in ∆[a](c) with all but one tensor-factor having degree

0 are 1⊗·· ·⊗ 1⊗ c,1⊗·· ·⊗ 1⊗ c⊗ 1, . . . ,c⊗ 1⊗·· ·⊗ 1. So Ψa(c) = ac+∑l(y)>1 αcyy

for generators c, and αcy ≥ 0 by the hypothesis that all coproduct structure constants are

non-negative. As Ψa(x) = Ψa (c1) ...Ψ
a (cl), and length is multiplicative (Lemma 5.1.3.i),

the expression for Ψa(x) follows.

It is then clear that → is reflexive and antisymmetric. Transitivity follows from the

power rule: if x→ y and y→ y′, then y appears in Ψa(x) for some a and y′ appears in

Ψa′(y) for some a′. So y′ appears in Ψa′Ψa(x) = Ψa′a(x). (The non-negativity of coproduct

structure constants ensures that the y′ term in Ψa′a(x) cannot cancel out due to contributions

from an intermediary different from x′.)

Remark. It is possible to adapt the above arguments to Hopf algebras with a (noncommu-

tative) free basis B = {S1S2 . . .Sk|k ∈ N,Si ∈ C } (see Theorem 2.5.1.B). This shows that,

for x ∈B, all terms in Ψa(x) are either a permutation of the factors of x, or have length

greater than that of x. In particular, for the associated Markov chain, the probability of

going from x to some permutation of its factors (as opposed to a state of greater length,

from which there is no return to x) is al(x)−deg(x). However, it is easier to deduce such infor-

mation by working in the abelianisation of the underlying Hopf algebra; that is, quotient it

by commutators xy− yx, which would send the free basis B to a free-commutative basis.

By Theorem 4.7.1, such quotienting corresponds to a projection of the Markov chain.

Here are two more technical results in this spirit, which will be helpful in Section 5.1.3

for deducing a triangularity feature of the eigenfunctions.

Lemma 5.1.6. Let x,xi,yi be elements of a free-commutative basis, with respect to which

all coproduct structure constants are non-negative. If x = x1 . . .xk and xi→ yi for each i,

then x→ y1 . . .yk.
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Proof. For readability, take k = 2 and write x = st, s→ s′, t → t ′. By definition of the

relation →, it must be that s′ = s(1) . . .s(a) for some summand s(1)⊗ ·· · ⊗ s(a) of ∆̄[a](s).

Likewise t ′ = t(1) . . . t(a′) for some a′. Suppose a > a′. Coassociativity implies that ∆[a](t) =

(ι⊗·· ·⊗ ι⊗∆[a−a′])∆[a′](t), and t(a′)⊗1⊗·· ·⊗1 is certainly a summand of ∆[a−a′](t(a′)),

so t(1)⊗ ·· · ⊗ t(a′)⊗ 1⊗ ·· · ⊗ 1 occurs in ∆[a](t). So, taking t(a′+1) = · · · = t(a) = 1, we

can assume a = a′. Then ∆[a](x) = ∆[a](s)∆[a](t) contains the term s(1)t(1)⊗ ·· ·⊗ s(a)t(a).

Hence Ψa(x) contains the term s(1)t(1) . . .s(a)t(a), and this product is s′t ′ by commutativity.

(Again, this instance of s′t ′ in Ψa(x) cannot cancel out with another term in Ψa(x) because

the coproduct structure constants are non-negative.)

Lemma 5.1.7. Let x,y be elements of a free-commutative basis, with respect to which all

coproduct structure constants are non-negative. Suppose y has factorisation into genera-

tors y = c1 . . .cl . If x→ y then a coproduct structure constant of the form η
cσ(1),...,cσ(l)
x (for

some σ ∈Sl) is nonzero.

Proof. If x → y, then, for some a, there is a term x(1) ⊗ ·· · ⊗ x(a) in ∆[a](x) with

x(1) . . .x(a) = y. So each x(i) must have factorisation x(i) = ∏ j∈Bi c j for some set parti-

tion B1| . . . |Ba of {1,2, . . . , l}. In other words, there is some permutation σ ∈ Sl and

some l1, . . . la ∈ N such that x(1) = cσ(1) . . .cσ(l1),x(2) = cσ(11+1) . . .cσ(l1+l2), . . . ,x(a) =

cσ(11+···+la−1+1) . . .cσ(l). Now ∆[l1](x(1)) contains the term cσ(1)⊗ ·· · ⊗ cσ(l1), and simi-

larly for ∆[l2](x(2)), . . . ,∆[la](x(a)). So ∆[l](x) = (∆[l1]⊗·· ·⊗∆[la])∆[a](x) contains the term

cσ(1)⊗·· ·⊗cσ(l). (This cannot cancel out with another term in ∆[l](x) because the coprod-

uct structure constants are non-negative.) Hence η
cσ(1),...,cσ(l)
x is nonzero.

5.1.3 Probability Estimates from Eigenfunctions

The focus of this section is the right eigenfunctions, since they aid in measuring how far the

chain is from being absorbed. But first, one observation about left eigenfunctions deserves

a mention.

Recall that the eigenbasis {e(c1) . . .e(ck)|k ∈ N,{c1, . . . ,ck} a multiset in C } from

Theorem 2.5.1.A is “length-triangular” in the sense that e(c1) . . .e(ck) = c1 . . .ck+ terms

of higher length; indeed, this allowed the conclusion that such vectors form a basis. Since

the partial-order by→ refines the partial-ordering by length, it’s natural to wonder if this
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basis is moreover “triangular” with respect to the→ partial-order. Proposition 5.1.8 below

shows this is true: if

gc1...ck(y) = coefficient of y in η(y)e(c1) . . .e(ck),

then gc1...ck(c1 . . .ck) = η(c1 . . .ck), and gc1...ck(y) = 0 if y is not accessible from c1 . . .ck.

Proposition 5.1.8. Let B be a free-commutative basis of a graded connected Hopf algebra

over R. If x ∈B has factorisation into generators x = c1 . . .ck, then

e(c1) . . .e(ck) = x+ ∑
x→y
y6=x

αxyy

for some constants αxy.

Proof. The proof of Theorem 2.5.1.A already shows that the coefficient of x in

e(c1) . . .e(ck) is 1, so it suffices to show that all y that appear in e(c1) . . .e(ck) must satisfy

x→ y.

First consider the case where k = 1. By definition of the Eulerian idempotent, each

term y of e(c1) appears in (−1)a−1

a m[a]∆̄[a](c1) for some a, and hence in Ψa(c1), so c1→ y

as required. Now for k > 1,

e(c1) . . .e(ck) =

 ∑
c1→c′1

αc1c′1
c′1

 . . .

 ∑
ck→c′k

αckc′k
c′k

 ,

and Lemma 5.1.6 precisely concludes that x = c1 . . .ck→ c′1 . . .c
′
k.

And now onto right eigenfunctions. By Proposition 3.2.1.R, these come from eigen-

vectors of the Hopf-power on the dual algebra H ∗. As H is commutative, its dual H ∗ is

cocommutative, so Theorem 2.5.1.B generates an eigenbasis of Ψa on H ∗ from a basis of

primitives of H ∗, namely by taking symmetrised products. When the state space basis is

free-commutative, a convenient choice of such a basis of primitives is the duals of the free

generating set. Then the eigenfunctions are simply sums of coproduct structure constants,

and this has the advantage that their calculation do not explicitly involve H ∗. Their values
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have a combinatorial interpretation as the numbers of ways to break x into the constituent

“components” of y, divided by the number of ways to break x into singletons.

Theorem 5.1.9. Let H be a Hopf algebra over R with free-commutative state space basis

B. For each y ∈Bn, define fy : Bn→Bn by:

fy(x) :=
1

l!Z(y)η(x) ∑
σ∈Sl

η
cσ(1),...,cσ(l)
x =

1
l!η(x) ∑

σ∈Sy

η
cσ(1),...,cσ(l)
x .

Here, y = c1 . . .cl is the factorisation of y into generators; η
cσ(1),...,cσ(l)
x is the coproduct

structure constant, equal to the coefficient of cσ(1)⊗·· ·⊗cσ(l) in ∆[l](x); η(x) is the rescal-

ing function in Definition 4.3.1; Z(y) is the size of the stabiliser of the symmetric group Sl

permuting (c1, . . . ,cl); and Sy is a set of coset representatives of this stabiliser in Sl . Then

fy is a right eigenfunction for the ath Hopf-power Markov chain on Bn, with eigenvalue

al(y)−n. This right eigenfunction has a triangular property

fy(x) = 0 if x 6→ y;

fy(x)> 0 if x→ y;

fy(y) =
1

η(y)
.

Furthermore, {fy|y ∈ Bn} is a basis of right eigenfunctions dual to the basis of left

eigenfunctions coming from Theorem 2.5.1.A . In other words, if gc′1...c
′
k
(x) is the coefficient

of x in η(x)e(c′1) . . .e(c
′
k), then

∑
x∈Bn

gc′1...c
′
k
(x)fy(x) =

1 if y = c′1 . . .c
′
k (i.e. {c1, . . . ,cl}=

{
c′1, . . . ,c

′
k

}
as multisets);

0 otherwise.

The proof is delayed until the end of this section. See Equation 5.1 below for some

special cases of this formula. Note that, if H is in addition cocommutative, then it is

unnecessary to symmetrise - just set fy(x) := 1
Z(y)η(x)η

c1,...,cl
x .



CHAPTER 5. CHAINS ON FREE-COMMUTATIVE BASES 87

Figure 5.1: The “two triangles with one common vertex” graph

Example 5.1.10. Recall from the opening of this chapter the Hopf algebra Ḡ of isomor-

phism classes of graphs, whose associated Markov chain models edge-removal. Ḡ is co-

commutative, so the simpler formula fy(x) := 1
Z(y)η(x)η

c1,...,cl
x applies. As remarked in

the opening of this chapter, the rescaling function η(x) = (degx)! for all x, so fy(x) =
1

Z(y)(degx)!η
c1...cl
x . This example will calculate fy(x) in the case where x is “two triangles

with one common vertex” as depicted in Figure 5.1, and y is the disjoint union of a path of

length 3 and an edge. So c1 = P3, the path of length 3, and c2 = P2, a single edge (or vice

versa, the order does not matter). Since these are distinct, Z(y) = 1. There are four ways to

partition the vertex set of x into a triple and a pair so that the respective induced subgraphs

are P3 and P2. (The triples for these four ways are, respectively: the top three vertices; the

top left, top middle and bottom right; the top right, top middle and bottom left; and the

bottom two vertices and the top middle.) Thus fy(x) = 1
5!4.

The triangular property of the right eigenfunctions fy makes them ideal to use in Propo-

sition 1.1.3.iii to bound the probability that the chain can still reach y. The result is recorded

in Proposition 5.1.11 below, along with a few variants. (Bounds analogous to those in Part

i hold for any unidirectional Markov chain, since these right eigenfunctions come from ap-

plying Perron-Frobenius to the minors of the transition matrix - that is, the submatrix with

the rows and columns corresponding to states which can reach y. However, Part ii requires

x 6→ y for every pair of distinct states x,y whose eigenfunctions fx, fy have the same eigen-

value.) Remark 1 after [DPR14, Cor 4.10] shows that, for the rock-breaking chain of the

present Section 5.2, the bound for y = (2,1, . . . ,1) is an asymptotic equality.

Proposition 5.1.11. Let {Xm} be the ath Hopf-power Markov chain on a free-commutative

state space basis Bn. Fix a state y ∈Bn and let fy be its corresponding right eigenfunction

as defined in Theorem 5.1.9. Then the probability that the chain can still reach y after m

steps has the following upper bounds:
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(i)

P{Xm→ y|X0 = x0} ≤
a(l(y)−n)mfy(x0)

minx∈Bn,x→y fy(x)
=

a(l(y)−n)m 1
η(x0)

∑σ∈Sl
η

cσ(1),...,cσ(l)
x0

minx∈Bn,x→y
1

η(x) ∑σ∈Sl
η

cσ(1),...,cσ(l)
x

.

(ii)

P{Xm→ y|X0 = x0}= η(y)a(l(y)−n)mfy(x0)(1+o(1)) as m→ ∞.

(iii) For any starting distribution,

P{Xm→ y} ≤ a(l(y)−n)m

minx∈Bn,x→y fy(x)Z(y)
1

η(y)

(
n

degc1 . . .degcl

)
.

In each case, y = c1 . . .cl is the factorisation of y into generators.

Be careful that Parts ii and iii depend upon the scaling of fy - they need adjustment if

used with a right eigenfunction which is a scalar multiple of fy. See Proposition 5.1.14.

(This problem does not occur for the first bound as that involves only a ratio of eigenfunc-

tion values.)

Proof. Part i is a straightforward application of Proposition 1.1.3.iii, a fact of general

Markov chains.

To see Part ii, first note that, from the triangularity properties of fy, the difference of

functions 1{→y}−η(y)fy is non-zero only on S′y := {y′ ∈Bn|y′→ y,y′ 6= y}. (Here, 1{→y}

is the indicator function of being able to reach y.) Also by triangularity, such functions

that are non-zero only on S′y are spanned by the eigenfunctions {fy′|y′ ∈ S′y}. Hence the

expansion of 1{→y} into right eigenfunctions has the form

1{→y} = η(y)fy + ∑
y′∈S′y

αy′fy′
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for some constants αy′ . By linearity of expectations, as in Proposition 1.1.3, this implies

P{Xm→ y|X0 = x0}= η(y)a(l(y)−n)mfy(x0)+ ∑
y′∈S′y

a(l(y
′)−n)m

αy′fy′(x0)

= η(y)a(l(y)−n)mfy(x0)

1+ ∑
y′∈S′y

a(l(y
′)−l(y))m αy′fy′(x0)

η(y)fy(x0)

 .

Now use Proposition 5.1.4: all y′ ∈ S′y satisfies y′→ y and y′ 6= y, which forces l(y′)≤ l(y).

So the ratios of eigenvalues a(l(y
′)−l(y)) is less than 1, and hence the sum tends to zero as

m→ ∞.

Now turn to Part iii, the bound independent of the starting state. It suffices to show that

Z(y)fy(x0) =
1

l!η(x0)
∑

σ∈Sl

η
cσ(1),...,cσ(l)
x0 ≤ 1

η(y)

(
n

degc1 . . .degcl

)

for all states x0 ∈ Bn. For any composition d1 + · · ·+ dl = n, coassociativity says that

∆[n] = (∆[d1]⊗·· ·⊗∆[dl ])∆[l], so

η(x0) = ∑
deg(c′i)=di

η(c′1) . . .η(c′l)η
c′1,...,c

′
l

x0 .

All summands on the right hand side are non-negative, so choosing di = deg(cσ(i)) shows

that, for each σ ∈Sl:

η(x0)≥ η
cσ(1),...,cσ(l)
x0 η(c1) . . .η(cl) = η

cσ(1),...,cσ(l)
x0

η(y)( n
degc1...degcl

) ,
using Lemma 5.1.2 for the last equality.

In many common situations, including all examples in this thesis, all coproduct struc-

ture constants are integral. Then

fy(x) =
1

l!η(x) ∑
σ∈Sy

η
cσ(1),...,cσ(l)
x ≥ 1

l(y)!η(x)
,
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so replacing (minx∈Bn,x→y fy(x))−1 with l(y)!maxx∈Bn,x→y η(x) in either inequality of

Proposition 5.1.11 gives a looser but computationally easier bound.

Example 5.1.12. Continue from Example 5.1.10. Let y = P3P2, the disjoint union of a path

of length 3 and an edge, and x be “two triangles with one common vertex” as in Figure

5.1. Example 5.1.10 calculated fy(x) to be 4
5! . Then, using the looser bound in the last

paragraph, the probability that, after m steps of the Hopf-square Markov chain starting at

x, the graph still contains three vertices on which the induced subgraph is a path, and the

other two vertices are still connected, is at most 2(2−5)m 4
5!2!5! = 21−3m4.

The previous example of bounding the probability of having three vertices on which

the induced subgraph is a path, and the other two vertices connected feels a little contrived.

It is more natural to ask for the probability that at least three vertices are still in the same

connected component. This equates to being at a state which can reach either P3•2 or K3•2,

since the only connected graphs on three vertices are P3, the path of length 3, and K3, the

complete graph on 3 vertices. Similarly, being at a state which can reach P2•3, the graph

with one edge and three isolated vertices, is synonymous with not yet being absorbed. So

the most important probabilities of the form “in a state which can still reach y” are when y

has factorisation y = c • · · ·• for some generator c 6= •. In this case, it will be convenient

to scale this eigenvector by degy!
degc! . So abuse notation and write fc for the eigenvector degy!

degc! fy

(note that the two notations agree when y = c), and extend it to degrees lower than deg(c)

by declaring it to be the zero function there. In other words, for all x ∈B:

fc(x) :=
degx!
degc!

fc•deg(x)−deg(c)(x) (5.1)

=

(degx
degc

)
η(x)(degx−degc+1)

(ηc,•,...,•
x + · · ·+η

•,...,•,c
x )

=

(degx
degc

)
η(x)(degx−degc+1)∑

w,z
η(w)η(z)ηwcz

x if deg(x)≥ deg(c);

fc(x) := 0. if deg(x)< deg(c).

Here, the second equality is by definition of fy, and the third equality is a consequence

of the following coassociativity equation (which holds for any choice of di summing to
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deg(x))

∑
wi∈Bdi

η
z1,...,zi
w1

η
zi+1,...,z j
w2 η

z j+1,...,za
w3 η

w1,w2,w3
x = η

z1,...,za
x ,

in the cases where all but one zi are •. The eigenvalue of fc is a−degc+1. These are usually

the easiest right eigenfunctions to calculate, as they behave well with “recursive structures”

such as the trees of Section 5.3. The following Proposition is one general instance of this

principle; it reduces the calculation of fc to its value on generators.

Proposition 5.1.13. The right eigenfunction fc is additive in the sense that

fc(xx′) = fc(x)+ fc(x′).

Proof. This argument is much like that of Lemma 5.1.2 regarding η(xx′). Since ∆(xx′) =

∆(x)∆(x′), a term in η
c,•,...,•
xx′ + · · ·+η

•,...,•,c
xx′ arises in one of two ways: from a term in

η
c,•,...,•
x + · · ·+η

•,...,•,c
x and a term in η(x′), or from a term in η

c,•,...,•
x′ + · · ·+η

•,...,•,c
x′ and

a term in η(x). The first way involves a choice of degx′ tensor-factors amongst degxx′−
degc+ 1 in which to place the term from η(x′), and similarly a choice of degx positions

for the second way. Hence

(ηc,•,...,•
x + · · ·+η

•,...,•,c
x )

=

(
degxx′−degc+1

degx′

)
(ηc,•,...,•

x + · · ·+η
•,...,•,c
x )η(x′)

+

(
degxx′−degc+1

degx

)
(ηc,•,...,•

x′ + · · ·+η
•,...,•,c
x′ )η(x)

=η(x)η(x′)(degxx′−degc+1)!degx′!degx!degc!(fc(x)+ fc(x′)).

Combining this with the formula for η(xx′) in Lemma 5.1.2 gives

fc(xx′) =

(degxx′
degc

)
η(xx′)(degxx′−degc+1)

(ηc,•,...,•
x + · · ·+η

•,...,•,c
x )

=

((
degxx′

degx

)
η(x)η(x′)

)−1
(degxx′

degc

)
(degxx′−degc+1)

(ηc,•,...,•
x + · · ·+η

•,...,•,c
x )

= fc(x)+ fc(x′).
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Because the fc are non-trivial multiples of the fy when y 6= c, the bound in Proposition

5.1.13.iii, which is independent of the starting state, does not apply verbatim. Here is

the modified statement (which uses the fact that Z(c•n−degc) = (n− degc)!, and η(y) =( n
degc

)
η(c) as per Lemma 5.1.2).

Proposition 5.1.14. Let {Xm} be the ath Hopf-power Markov chain on a free-commutative

state space basis Bn. Let c be a generator of the underlying Hopf algebra H , and let fc

be its corresponding right eigenfunction as defined in Equation 5.1. Then, for any starting

distribution, the probability that the chain can still reach c•n−degc after m steps has the

following upper bound:

P{Xm→ c•n−degc} ≤ a(l(y)−n)m

minx∈Bn,x→y fc(x)(n−degc+1)
1

η(c)

(
n

degc

)
.

In the case of (isomorphism classes of) graphs, η
c,•,...,•
x = · · · = η

•,...,•,c
x is the number

of induced subgraphs of x isomorphic to c, multiplied by the number of orders in which to

choose the singletons, which is (degx−degc)!. Recall that η(x) = (degx)!. So

fc(x) =
1

degc!
|{induced subgraphs of x isomorphic to c}|.

The analogous statement holds for other species-with-restrictions. Note that summing these

over all connected graphs c on j vertices gives another right eigenfunction, with eigenvalue

a− j+1:

f j(x) :=
1
j!
|{connected induced subgraphs of G with j vertices}|.

Minor variations on Propositions 1.1.3 and 5.1.11.i with the fcs and f js then imply the

following facts. They have an alternative, elementary derivation: the chance that any one

particular connected subgraph c survives one step of the edge-removal chain is a−degc+1,

since all vertices of c must receive the same colour. Since expectation is linear, summing

these over all subgraphs of interest gives the expected number of these subgraphs that

survive.
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Proposition 5.1.15. Let {Xm} be the ath Hopf-power Markov chain on graphs describing

edge-removal. Let c be any connected graph. Then

E{|{induced subgraphs of Xm isomorphic to c}||X0 = G}

=a(−degc+1)m|{induced subgraphs of G isomorphic to c}|;

P{Xm has a connected component with ≥ j vertices|X0 = G}

≤E{|{connected components of Xm with ≥ j vertices}||X0 = G}

≤E{|{connected induced subgraphs of Xm with j vertices}||X0 = G}

=a(− j+1)m|{connected induced subgraphs of G with j vertices}|.

In particular, the case j = 2 gives

P{Xm is not absorbed|X0 = G}

≤E{|{edges in Xm}||X0 = G}= a−m|{edges in G}|.

Example 5.1.16. Take x0 to be the “two triangles with one common vertex” graph of Fig-

ure 5.1 above. It has four induced subgraphs that are paths of length 3 (Example 5.1.10

identified these), and the two obvious induced subgraphs that are triangles. So the proba-

bility of having a connected component of size at least 3 after m steps of the Hopf-square

Markov chain is less than 2−2m6, which is also the expected number of triples that remain

connected.

Proof of Theorem 5.1.9, right eigenfunctions in terms of coproduct structure constants .

By definition of the coproduct structure constant, and of the product structure on the dual
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Hopf algebra,

fy(x) : =
1

l!Z(y)η(x) ∑
σ∈Sl

η
cσ(1),...,cσ(l)
x

=
1

l!Z(y)η(x) ∑
σ∈Sl

c∗
σ(1)⊗·· ·⊗ c∗

σ(l)(∆
[l]x)

=
1

l!Z(y)η(x) ∑
σ∈Sl

c∗
σ(1) . . .c

∗
σ(l)(x).

So, thanks to Proposition 3.2.1.R, fy being a right eigenfunction of the Hopf-power Markov

chain with eigenvalue al−n equates to fy := 1
l!Z(y) ∑σ∈Sl

c∗
σ(1) . . .c

∗
σ(l) being an eigenvector

of Ψa on H ∗ with eigenvalue al . This will follow from the Symmetrisiation Lemma (The-

orem 2.3.2) once it is clear that the c∗i are primitive.

To establish that each c∗ is primitive, proceed by contradiction. Take a term w∗⊗ z∗

in ∆̄(c∗) = ∆(c∗)− 1⊗ c∗− c∗⊗ 1, with w,z ∈B. Then ∆(c∗)(w⊗ z) is non-zero. Since

comultiplication in H ∗ is dual to multiplication in H , ∆(c∗)(w⊗ z) = c∗(wz). Now B is

free-commutative so wz ∈B, thus c∗(wz) is only non-zero if wz = c . But, by the counit

axiom for graded connected Hopf algebras, ∆̄(c∗)∈
⊕degc−1

j=1 H ∗
j ⊗H ∗

degc− j, so both w and

z have strictly positive degree. So c = wz contradicts the assumption that c is a generator,

and hence no term w∗⊗ z∗ can exist in ∆̄(c∗), i.e. ∆̄(c∗) = 0.

To see the triangularity properties, note that fy(x) is non-zero only if η
cσ(1),...,cσ(l)
x is

non-zero for some σ ∈Sl , which forces x→ cσ(1) . . .cσ(l) = y. Conversely, if x→ y, then

by Lemma 5.1.7 η
cσ(1),...,cσ(l)
x is non-zero for some σ , and all other coproduct structure

constants are non-negative, so fy(x)> 0. To show that fy(y) = 1
η(y) , it suffices to show that

∑σ∈Sl
η

cσ(1),...,cσ(l)
y = Z(y) for each σ ∈Sl . Rewrite the left hand side using the dual Hopf
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algebra:

∑
σ∈Sl

η
cσ(1),...,cσ(l)
y =

(
c∗

σ(1)⊗·· ·⊗ c∗
σ(l)

)
∆
[l](y)

=
(

c∗
σ(1)⊗·· ·⊗ c∗

σ(l)

)
∆
[l](c1 . . .cl)

=
(

c∗
σ(1) . . .c

∗
σ(l)

)
(c1 . . .cl)

=
(

∆
[l]
(

c∗
σ(1) . . .c

∗
σ(l)

))
(c1⊗·· ·⊗ cl)

=
(

∆
[l](c∗

σ(1)) . . .∆
[l](c∗

σ(l))
)
(c1⊗·· ·⊗ cl).

As each c∗
σ(i) is primitive,

(
∆
[l](c∗

σ(1)) . . .∆
[l](c∗

σ(l))
)
= ∑

A1q···qAl={1,2,...,l}
∑

σ∈Sl

(
∏
i∈A1

c∗
σ(i)

)
⊗·· ·⊗

(
∏
i∈Al

c∗
σ(i)

)
.

Hence its evaluation on c1⊗·· ·⊗ cl is∣∣∣∣∣
{
(A1, . . . ,Al)|A1q·· ·qAl = {1,2, . . . , l}, ∏

i∈A1

c∗
σ(i) = c∗1, . . . , ∏

i∈Al

c∗
σ(i) = c∗l

}∣∣∣∣∣
=|{τ ∈Sl|cτσ(i) = ci}|

=|{τ ∈Sl|cτ(i) = ci}|= Z(y).

The last claim of Theorem 5.1.9 is that ∑x∈Bn gc′1...c
′
k
(x)fy(x) = 1 when y = c′1 . . .c

′
k and

is 0 otherwise; it follows from this duality statement that fy is a basis. First take the case

where l(y) 6= k; then fy and gc′1...c
′
k

are eigenvectors of dual maps with different eigenvalues,

so the required sum must be zero, by the following simple linear algebra argument (recall

that Ǩ is the transition matrix):

ak
∑

x∈Bn

gc′1...c
′
k
(x)fy(x) = ∑

x,z∈Bn

gc′1...c
′
k
(z)Ǩ(z,x)fy(x) = al

∑
x∈Bn

gc′1...c
′
k
(x)fy(x).

So take l(y) = k. Recall from Proposition 5.1.8 that gc′1...c
′
k
(x) is non-zero only if

c′1 . . .c
′
k → x, and earlier in this proof showed that fy(x) is non-zero only if x→ y. So
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the only terms x which contribute to ∑x∈Bn gc′1...c
′
k
(x)fy(x) must satisfy c′1 . . .c

′
k → x→ y.

By Proposition 5.1.4, this implies k = l(c′1 . . .c
′
k)≥ l(x)≥ l(y) with equality if and only if

c′1 . . .c
′
k = x = y. As the current assumption is that k = l(y), no x’s contribute to the sum

unless c′1 . . .c
′
k = y. In this case, the sum is gy(y)fy(y) = η(y) 1

η(y) = 1.

5.1.4 Probability Estimates from Quasisymmetric Functions

The previous section provided upper bounds for the probabilities that a Hopf-power Markov

chain is “far from absorbed”. This section connects the complementary probabilities, of

being “close to absorbed”, to the following result of Aguiar, Bergeron and Sottile, that

the algebra of quasisymmetric functions (Example 4.1.6) is terminal in the category of

combinatorial Hopf algebras with a character. (For this section, elements of QSym will be

in the variables t1, t2, . . . to distinguish from the states x of the Markov chain.)

Theorem 5.1.17. [ABS06, Th. 4.1] Let H be a graded, connected Hopf algebra over

R, and let ζ : H → R be a multiplicative linear functional (i.e. ζ (wz) = ζ (w)ζ (z)).

Then there is a unique Hopf-morphism χζ : H → QSym such that, for each x ∈H , the

quasisymmetric function χζ (x) evaluates to ζ (x) when t1 = 1 and t2 = t3 = · · · = 0 . To

explicitly construct χζ , set the coefficient of the monomial quasisymmetric function MI in

χζ (x) to be the image of x under the composite

H
∆[l(I)]
−−−→H ⊗l(I)

πi1⊗···⊗πil(I)−−−−−−−→Hi1⊗·· ·⊗Hil(I)
ζ⊗l(I)

−−−→ R.

where, in the middle map, πi j denotes the projection to the subspace of degree i j.

One motivating example from the authors [ABS06, Ex. 4.5] is H = Ḡ , the algebra of

isomorphism classes of graphs. For a graph G, set ζ (G) to be 1 if G has no edges, and 0

otherwise. Then χζ (G) is Stanley’s chromatic symmetric function [Sta95]: the coefficient

of xr1
1 . . .xrn

n in χζ (G) counts the proper colourings of G where ri vertices receive colour

i. (A proper colouring of G is an assignment of colours to the vertices of G so that no

two vertices on an edge have the same colour.) Note that χζ (G) evaluated at t1 = · · · =
ta = 1, ta+1 = ta+2 = · · · = 0 is then precisely the number of proper colourings of G in a

colours (not necessarily using all of them). Equivalently, χζ (G) evaluated at t1 = · · ·= ta =
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1
a , ta+1 = ta+2 = · · ·= 0 is the probability that uniformly and independently choosing one of

a colours for each vertex of G produces a proper colouring. According to the description of

the Hopf-power Markov chain on graphs (Example 4.1.3), this is precisely the probability

of absorption after a single step. The same is true of other Hopf-power Markov chains on

free-commutative bases. Note that it is enough to consider absorption in one step because,

by the power rule, m steps of the ath Hopf-power Markov chain on a commutative Hopf

algebra is equivalent to one step of the amth Hopf-power Markov chain.

In the results below, [ f ]1/a denotes evaluating the quasisymmetric function f at t1 =

· · ·= ta = 1
a , ta+1 = ta+2 = · · ·= 0.

Proposition 5.1.18 (Probability of absorption). Let B be a free-commutative state space

basis of H , and ζ : H → R be the indicator function of absorption, extended linearly.

(In other words, ζ (x) = 1 if x is an absorbing state, and 0 for other states x.) Then the

probability that the ath Hopf-power Markov chain on Bn is absorbed in a single step

starting from x0 is

∑
y:l(y)=n

Ǩa,n(x0,y) =
[

n!
η(x0)

χ
ζ (x0)

]
1/a

.

It is natural to ask whether χζ will analogously give the probability of landing in some

subset Y of states if ζ is the indicator function on Y . The obstacle is that such a ζ might

not be multiplicative. The first theorem below gives one class of Y s for which ζ is clearly

multiplicative, and the second indicates the best one can hope for in a completely general

setting, when B might not even be free-commutative.

Theorem 5.1.19. Let B be a free-commutative state space basis of H , and C ′ a subset

of the free generators. Let ζ : H → R be the multiplicative linear functional with ζ (c) =
η(c)

(degc)! if c ∈ C ′, and ζ (c) = 0 for other free generators c. Then, for the ath Hopf-power

Markov chain {Xm} on Bn,

P{all factors of X1 are in C ′|X0 = x0}=
[
(degx0)!

η(x0)
χ

ζ (x0)

]
1/a

.

Theorem 5.1.20. Let B be any state space basis of H , and {Xm} the ath Hopf-power

Markov chain on Bn. Let Y ⊆Bn, and ζ : H → R be a multiplicative linear functional
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satisfying ζ (y)> 0 for y ∈Bn∩Y , ζ (y) = 0 for y ∈Bn\Y . Then(
min
y∈Y

η(y)
ζ (y)

)[
1

η(x0)
χ

ζ (x0)

]
1/a
≤P{X1 ∈Y |X0 = x0}≤

(
max
y∈Y

η(y)
ζ (y)

)[
1

η(x0)
χ

ζ (x0)

]
1/a

.

Example 5.1.21. Work in Ḡ , the algebra of isomorphism classes of graphs, where η(x) =

deg(x)!. Let C ′ = B1q ·· ·qB j−1. Then the function ζ of Theorem 5.1.19 takes value

1 on graphs each of whose connected components have fewer than j vertices, and value

0 on graphs with a connected component of at least j vertices. Then
[
χζ (G)

]
1/a

yields

the probability that, after one step of the edge-removal chain started at G, all connected

components have size at most j−1.

Proofs of Proposition 5.1.18, Theorems 5.1.19 and 5.1.20. First rewrite the definition of

χζ in terms of coproduct structure constants:

χ
ζ (x0) =

n

∑
l=1

∑
deg(zi)>0

η
z1,...,zl
x0

ζ (z1) . . .ζ (zl)M(degz1,...,degzl)

=
∞

∑
l=1

∑
z1,...,zl

deg(zl)>0

η
z1,...,zl
x0

ζ (z1 . . .zl)t
degz1
1 . . . tdegzl

l .

So, when t1 = · · · = ta = 1
a , ta+1 = ta+2 = · · · = 0, the quasisymmetric function χζ (x0)

evaluates to

∑
z1,...,za

η
z1,...,za
x0

ζ (z1 . . .za)a−n = η(x0) ∑
y∈Bn

Ǩa,n(x0,y)
ζ (y)
η(y)

.

Now, in the setup of Theorem 5.1.20,

P{X1 ∈ Y |X0 = x0}= ∑
y∈Y

Ǩa,n(x0,y)

≤
(

max
y∈Y

η(y)
ζ (y)

)
1

η(x0)

(
η(x0) ∑

y∈Y
Ǩa,n(x0,y)

ζ (y)
η(y)

)

=

(
max
y∈Y

η(y)
ζ (y)

)[
1

η(x0)
χ

ζ (x0)

]
1/a

,
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and an analogous argument gives the lower bound.

In the specialisation of Theorem 5.1.19, the character ζ has value η(c)
(degc)! for c ∈ C ′ and

is zero on other generators. By Lemma 5.1.2 on η of products, ζ (y)
η(y) =

1
(degy)! if all factors

of y are in C ′, and is 0 otherwise. Hence
[
χζ (x0)

]
1/a

is precisely

η(x0)

(degy)! ∑
y

Ǩa,n(x0,y),

summing over all y whose factors are in C ′. Proposition 5.1.18 is then immediate on taking

C ′ = B1.

5.2 Rock-Breaking

This section investigates a model of rock-breaking, one of two initial examples of a Hopf-

power Markov chain in [DPR14, Sec. 4], which gives references to Kolmogorov’s study of

similar breaking models. The states of this Markov chain are partitions λ = (λ1, . . . ,λl),

a multiset of positive integers recording the sizes of a collection of rocks. (It is best here

to think of the parts λi as unordered, although the standard notation is to write λ1 ≥ λ2 ≥
λl(λ ).) In what follows, |λ | := λ1 + · · ·+λl(λ ) is the total size of the rocks in the collection

λ , and the number of rocks in the collection is l(λ ), the length of the partition. Z(λ ) is the

size of the stabiliser of Sl(λ ) permuting the parts of λ . If ai(λ ) is the number of parts of

size i in λ , then Z(λ ) = ∏i ai(λ )!. For example, if µ = (2,1,1,1), then |µ| = 5, l(µ) = 4

and Z(µ) = 6.

At each step of the Markov chain, each rock breaks independently into a pieces whose

sizes follow a symmetric multinomial distribution. (This may result in some pieces of zero

size.) Section 5.2.1 phrases this process as the Hopf-power Markov chain on the homoge-

neous symmetric functions {hλ}. Sections 5.2.2 and 5.2.3 then leverage the machinery of

Section 5.1.3 and Chapter 2 to deduce a full right and left eigenbasis respectively. These

eigenbases correspond (up to scaling) to the power sum symmetric functions {pλ}, so the
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explicit expressions for the eigenfunctions recover well-known formulae for the change-

of-basis between {hλ} and {pλ}. Section 5.2.4 gives a numerical example of the transition

matrix and full eigenbases, for the case n = 4.

5.2.1 Constructing the Chain

The goal of this section is to interpret the Hopf-power Markov chain on the homogeneous

symmetric functions {hλ} as independent multinomial breaking. ([DPR14] took instead

the elementary symmetric functions {eλ} as their state space basis, which is equivalent as

there is a Hopf-involution on Λ exchanging {hλ} and {eλ} [Sta99, Sec. 7.6]. This thesis

chooses to use {hλ} because its dual basis is {mλ}, the monomial symmmetric functions,

while the dual of {eλ} is less studied.)

Recall from Example 4.1.5 that, as an algebra, Λ is the subalgebra of the power series

algebra R[[x1,x2, . . . ]] generated by

h(n) := ∑
i1≤···≤in

xi1 . . .xin,

which has degree n. There is a large swathe of literature on Λ - the standard references are

[Sta97, Chap. 7; Mac95, Chap. 1] . Only two facts are essential for building the present

chain: first,

hλ := h(λ1) . . .h(λl(λ ))

is a basis for Λ; second, the coproduct satisfies ∆(h(n)) = ∑
n
i=0 h(i)⊗ h(n−i), with the con-

vention h(0) = 1. It follows from the compatibility axiom of Hopf algebras that

∆(hλ ) =
i j=λ j

∑
i1,...,il=0

h(i1,...,il)⊗h(λ1−i1,...,λl−il).

(Here, it is not necessarily true that i1 ≥ i2 ≥ ·· · ≥ il . This is one instance where it is useful

to think of the parts as unordered.) Then it is obvious that {hλ} is a state space basis -

the product and coproduct structure constants of Λ with repsect to {hλ} are non-negative,

and ∆̄(hλ ) 6= 0 if deg(λ ) > 1. In the sequel, it will be convenient to write λ for hλ . For
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example, the above equation translates in this notation to

∆(λ ) =
i j=λ j

∑
i1,...,il=0

(i1, . . . , il)⊗ (λ1− i1, . . . ,λl− il).

Recall that Theorem 4.4.1 gives a three-step interpretation of a Hopf-power Markov

chain. To apply this to the chain on {hλ}, it is first necessary to compute the rescaling

function η . A simple induction shows that

∆
[r]((n)) = ∑

i1+···+ir=n
(i1)⊗·· ·⊗ (ir), (5.2)

so

∆̄
[n]((n)) = (1)⊗·· ·⊗ (1),

and η((n)) = 1. Lemma 5.1.2 then shows that

η(λ ) =

(
|λ |

λ1 . . .λl

)
η((λ1)) . . .η((λl)) =

(
|λ |

λ1 . . .λl

)
.

Note that {hλ} is a free-commutative basis, so, by Theorem 5.1.1, each rock in the

collection breaks independently. Thus it suffices to understand the chain starting at (n). By

Equation 5.2, the coproduct structure constant η
µ1,...,µa

(n) = 1 if µ1, . . . ,µa are all partitions

of single parts with |µ1|+ . . . |µa| = n, and is 0 for all other a-tuples of partitions. As a

result, the three-step description of Theorem 4.4.1 simplifies to:

1. Choose i1, . . . , ia according to a symmetric multinomial distribution.

2. Choose the a-tuple of one part partitions (i1), . . . ,(ia), some of which may be the

zero partition.

3. Move to (i1, . . . , ia).

Thus each rock breaks multinomially. Section 5.2.4 below displays the transition matrix

for the case a = 2 and n = 4, describing binomial breaking of rocks of total size four.
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5.2.2 Right Eigenfunctions

Begin with the simpler eigenfunctions f( j) for j > 1, defined in Equation 5.1 to be

f( j)(λ ) :=
(
|λ |

j

)
η
( j),(1),...,(1)
λ

η(λ )
.

By Proposition 5.1.13, these eigenfunctions satisfy f( j)(λ ) = f( j)(λ1)+ · · ·+ f( j)(λl); since

η
( j),(1),...,(1)
(n) = 1 and η((n)) = 1, it follows that

f( j)(λ ) =
l

∑
i=1

(
λi

j

)
.

The corresponding eigenvalue is a− j+1.

Recall from Section 5.1.3 that the main use of these eigenfunctions is to measure how

far the chain is from being absorbed. For the rock-breaking chain, this measure takes the

form of “expected number of large rocks”. Note that each part of λ of size j or greater

contributes at least 1 to f( j)(λ ); a simple application of Proposition 1.1.3 then gives the

Proposition below. The analogous result for the more general Markov chain of removing

edges from graphs is Proposition 5.1.15, from which this also follows easily.

Proposition 5.2.1. Let {Xm} denote the rock-breaking chain. Then, for any j > 1,

P{Xm contains a rock of size ≥ j|X0 = λ}

≤E{|{rocks of size ≥ j in Xm}||X0 = λ}

≤a(− j+1)m
l

∑
i=1

(
λi

j

)
.

In particular, the case j = 2 shows

P{Xm 6= (1,1, . . . ,1)} ≤ a−m
l

∑
i=1

(
λi

j

)
.

Theorem 5.1.9 gives this formula for the full right eigenbasis:
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Theorem 5.2.2. A basis {fµ} of right eigenfunctions of the rock-breaking chain is

fµ(λ ) :=
1( |λ |

λ1...λl(λ )

)∑
1

Z(µ1) . . .Z(µ l(λ ))

where the sum is over all l(λ )-tuples of partitions {µ j} such that µ j is a partition of λ j and

the disjoint union q jµ
j = µ , and Z(µ j) is the size of the stabiliser of Sl(µ j) permuting the

parts of µ j. In particular, fµ(µ) =
(( |µ|

µ1...µl(λ )

))−1
, and fµ(λ ) is positive if µ is a refinement

of λ , and is otherwise 0. The corresponding eigenvalue is al(µ)−n.

From this right eigenfunction formula, one can recover the expansion of the power sums

in terms of monomial symmetric functions [Sta99, Prop. 7.7.1]:

pµ = Z(µ)∑
λ

(
|λ |

λ1 . . .λl(λ )

)
fµ(λ )mλ = ∑

qµ i=µ

Z(µ)
Z(µ1) . . .Z(µ l)

m(|µ1|,...,|µ l |).

Here is an illustration of how to compute with this formula; the proof will follow.

Example 5.2.3. Take µ = (2,1,1,1), λ = (3,2). Then the possible {µ j} are

µ
1 = (2,1), µ

2 = (1,1);

µ
1 = (1,1,1), µ

2 = (2).

Hence

fµ(λ ) =
1(5
3

) (1
2
+

1
3

)
=

1
12

.

The full basis of right eigenfunctions for the case n = 4 is in Section 5.2.4.

Proof. For concreteness, take l(λ ) = 2 and l(µ) = 3. Then the simplification of Theorem

5.1.9 for cocommutative Hopf algebras gives

fµ(λ ) =
1

Z(µ)η(λ )
η
(µ1),(µ2),(µ3)
λ

=
1

Z(µ)
( |λ |

λ1 λ2

)η
(µ1),(µ2),(µ3)
λ

,
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where the parts of µ are ordered so µ1 ≥ µ2 ≥ µ3. To calculate the coproduct structure

constant η
(µ1),(µ2),(µ3)
λ

, recall that

∆
[3](λ ) = ∆

[3] (λ1)∆
[3] (λ2) = ∑

i1+ j1+k1=λ1
i2+ j2+k2=λ2

(i1, i2)⊗ ( j1, j2)⊗ (k1,k2).

So η
(µ1),(µ2),(µ3)
λ

enumerates the sextuples (i1, j1,k1, i2, j2,k2) such that i1 + j1 + k1 = λ1,

i2 + j2 + k2 = λ2, and i1 and i2 are µ1 and 0 in either order, and similarly for j1, j2 and

k1,k2. Set µ1 := (i1, j1,k1), µ2 = (i2, j2,k2); then these sextuples are precisely the case

where |µ1| = λ1, |µ2| = λ2, and the disjoint union µ1q µ2 = µ . If the parts of µ are

distinct (i.e. µ1 > µ2 > µ3), then one can reconstruct a unique sextuple from such a pair of

partitions: if µ1 has a part of size µ1, then i1 = µ1 and i2 = 0; else µ2 has a part of size µ1,

and i2 = µ1, i1 = 0; and similarly for j1, j2,k1,k2. If, however, µ1 = µ2 > µ3, and µ1,µ2

both have one part of the common size µ1 = µ2, then there are two sextuples corresponding

to (µ1,µ2): both i1 = j2 = µ1, i2 = j1 = 0 and i2 = j1 = µ1, i1 = j2 = 0 are possible. In

general, this multiplicity is the product of multinomial coefficients

∏
i

(
ai(µ)

ai(µ1) . . .ai(µ l(λ ))

)
,

where ai(µ) is the number of parts of µ of size i. Since ∏i ai(µ)! = Z(µ), the expression

in the theorem follows.

Now show that pµ = Z(µ)∑λ

( |λ |
λ1...λl(λ )

)
fµ(λ )mλ . Theorem 5.1.9 and Proposition

3.2.1.R constructs fµ(λ ) as 1
Z(µ)η(λ ) [(µ1)

∗ . . .(µl)
∗] (λ ), or the coefficient of λ ∗ in

1
Z(µ)η(λ )(µ1)

∗ . . .(µl)
∗. Viewing the algebra of symmetric functions as its own dual via

the Hall inner product, λ ∗ is the monomial symmetric function mλ . So fµ(λ ) is the coeffi-

cient of mλ in
1

Z(µ)η(λ )
m(µ1) . . .m(µl) =

1

Z(µ)
( |λ |

λ1...λl(λ )

) pµ .
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5.2.3 Left Eigenfunctions

Applying Theorem 2.5.1.A to the rock-breaking chain, taking the single-part partitions as

the free generating set, gives the following basis of left eigenfunctions.

Theorem 5.2.4. A basis {gµ} of left eigenfunctions of the rock-breaking chain is

gµ(λ ) = (−1)l(µ)−l(λ )
(

|λ |
λ1 . . .λl(µ)

)
∑

(
l
(
λ 1)−1

)
! . . .

(
l
(

λ l(µ)
)
−1
)

!

Z(λ 1) . . .Z(λ l(µ))

where the sum is over all l(µ)-tuples of partitions {λ j} such that λ j is a partition of µ j

and the disjoint union q jλ
j = λ , and Z(λ j) is the size of the stabiliser of Sl(λ j) permuting

the parts of λ j. In particular, gµ(µ) =
( |µ|

µ1...µl(λ )

)
, and gµ(λ ) is non-zero only if λ is a

refinement of µ . The corresponding eigenvalue is al(µ)−n.

From this left eigenfunction formula, one can recover the expansion of the power sums

in terms of complete symmetric functions:

pµ = µ1 . . .µl ∑
λ

1( |λ |
λ1...λl(λ )

)gµ(λ )hλ

= ∑
r
(−1)l(µ)−r

µ1 . . .µl ∑
|λ j|=µ j

(
l
(
λ 1)−1

)
! . . .(l (λ r)−1)!

Z(λ 1) . . .Z(λ r)
hqλ j .

As previously, here is a calculational example.

Example 5.2.5. Take λ = (2,1,1,1), µ = (3,2). Then the possible {λ j} are

λ
1 = (2,1), λ

2 = (1,1);

λ
1 = (1,1,1), λ

2 = (2).

Hence

gµ(λ ) = (−1)2
(

5
2

)(
1!1!
2!

+
2!0!
3!

)
=

25
3
.

The full basis of left eigenfunctions for the case n = 4 is in Section 5.2.4.
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Proof. By Theorem 2.5.1.A and and Proposition 3.2.1.L,

gµ(λ ) = coefficient of λ in η(λ )e((µ1)) . . .e
(
(µl(µ))

)
= coefficient of λ in

(
|λ |

λ1 . . .λl(λ )

)
e((µ1)) . . .e

(
(µl(µ))

)
.

Every occurrence of λ in e((µ1)) . . .e
(
(µl(µ))

)
is a product of a λ 1 term in e((µ1)), a

λ 2 term in e((µ2)), etc., for some choice of partitions λ j with |λ j| = µ j for each j, and

q jλ
j = λ . Hence it suffices to show that the coefficient of a fixed λ j in e((µ j)) is

(−1)l(λ j)−1(l(λ j)−1)!
Z(λ j)

.

Recall that

e((µ j)) = ∑
r≥1

(−1)r−1

r
m[r]

∆̄
[r]((µ j))

= ∑
r≥1

(−1)r−1

r ∑
i1+...ir=µ j
i1,...,ir>0

(i1, . . . ir),

so λ j only appears in the summand with r = l(λ j). Hence the required coefficient is
(−1)l(λ j)−1

l(λ j)
multiplied by the number of distinct orderings of the parts of λ j, which is l(λ j)!

Z(λ j)
.

To deduce the hλ -expansion of pµ , recall from above that gµ (λ )
η(λ ) is the coefficient of hλ

in the symmetric function e
(
h(µ1)

)
. . .e

(
h(µl)

)
. Since the algebra of symmetric functions

is cocommutative, the Eulerian idempotent map e is a projection onto the subspace of

primitives. So e(h(n)) is a primitive symmetric function of degree n. But, up to scaling,

the power sum p(n) is the only such symmetric function, so e(h(n)) is necessarily αn p(n)
for some number αn. Thus gµ (λ )

η(λ ) is the coefficient of hλ in αµ1 . . .αµl pµ , and it suffices to

show that αn =
1
n .

As usual, let fµ ,gµ be the symmetric functions inducing the eigenfunctions fµ ,gµ re-

spectively. Then 〈 fµ ,gµ〉 = ∑λ fµ(λ )gµ(λ ), where the left hand side is the Hall inner
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product. By Theorem 5.1.9, the right hand side is 1 for all µ . Take µ = (n), then

nαn = αn〈p(n), p(n)〉= 〈 f(n),g(n)〉= 1,

so αn =
1
n as desired.

Remark. This calculation is greatly simplified for the algebra of symmetric functions, com-

pared to other Hopf algebras. The reason is that, for a generator c, it is in general false that

all terms of m[a]∆̄[a](c) have length a, or equivalently that all tensor-factors of a term of

∆̄[a](c) are generators. See the fourth summand of the coproduct calculation in Figure 4.1

for one instance of this, in the Hopf algebra of graphs. Then terms of length say, three, in

e(c) may show up in both m[2]∆̄[2](c) and m[3]∆̄[3](c), so determining the coefficient of this

length three term in e(c) is much harder, due to these potential cancellations in e(c). Hence

much effort [Fis10; AS06; AS05b] has gone into developing cancellation-free expressions

for primitives, as alternatives to e(c).

5.2.4 Transition Matrix and Eigenfunctions when n = 4

The Hopf-square Markov chain on partitions of four describes independent binomial break-

ing of a collection of rocks with total size four. Its transition matrix K2,4 is the following

matrix:
(4) (3,1) (2,2) (2,1,1) (1,1,1,1)

(4) 1
8

1
2

3
8 0 0

(3,1) 0 1
4 0 3

4 0

(2,2) 0 0 1
4

1
2

1
4

(2,1,1) 0 0 0 1
2

1
2

(1,1,1,1) 0 0 0 0 1

.
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Its basis of right eigenfunctions, as determined by Theorem 5.2.2, are the columns of

the following matrix:

f(4) f(3,1) f(2,2) f(2,1,1) f(1,1,1,1)
(4) 1 1 1

2
1
2

1
24

(3,1) 0 1
4 0 1

4
1
24

(2,2) 0 0 1
6

1
6

1
24

(2,1,1) 0 0 0 1
12

1
24

(1,1,1,1) 0 0 0 0 1
24

.

Its basis of left eigenfunctions, as determined by Theorem 5.2.4, are the rows of the

following matrix:

(4) (3,1) (2,2) (2,1,1) (1,1,1,1)

g(4) 1 −4 −3 12 −6

g(3,1) 0 4 0 −12 8

g(2,2) 0 0 6 −12 6

g(2,1,1) 0 0 0 12 −12

g(1,1,1,1) 0 0 0 0 24

.

5.3 Tree-Pruning

This section examines the Hopf-power Markov chain whose underlying Hopf algebra is

the Connes-Kreimer algebra of rooted trees. This is one of many Hopf algebras arising

from quantum field theory during the surge in the relationship between the two fields in the

late 1990s. Its definition as a Hopf algebra first appeared in [Kre98; CK98], though they

note that it is essentially the same data as the Butcher group for Runge-Kutta methods of

solving ordinary differential equations [But72]. A textbook exposition of the use of trees

in Runge-Kutta methods is in [But08, Chap. 3].

In his thesis, Foissy [Foi02a; Foi02b; Foi13] constructs a noncommutative version of

the Connes-Kreimer Hopf algebra, which turns out to be isomorphic to PBT, the Loday-

Ronco Hopf algebra of planar binary trees [LR98]. [AS05a; FNT11] then relate it (and its
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dual Y Sym) to other Hopf algebras of trees, and well-known Hopf algebras coming from

polynomial realisations.

The main purpose of this example is to illustrate how to interpret the chain and to calcu-

late simple right eigenfunctions and probability bounds using the “recursive structure” of

trees. The exposition below should serve as a prototype for studying Hopf-power Markov

chains on other Hopf algebras of trees.

5.3.1 The Connes-Kreimer Hopf algebra

A tree is a connected graph (unlabelled) without cycles; a tree T is rooted if it has a dis-

tinguished vertex root(T ). (The embedding of a tree in the plane - e.g. whether an edge

runs to the left or the right - is immaterial). A rooted forest is a disjoint union of rooted

trees - so each of its components has a root. All trees and forests in this section are rooted

unless specified otherwise. Following [CK98], all diagrams below will show root(T ) as

the uppermost vertex, and edges will flow downwards from a parent to a child. A leaf is a

vertex with no children. More rigorous definitions of these and related terms are in [But08,

Sec. 300]; the trees here he calls “abstract trees” as their vertices are not labelled.

Some non-standard notation (see Example 5.3.1 below): deg(T ) is the number of ver-

tices in the tree T . A tree T ′ is a subtree of T if the subgraph which T induces on the vertex

set of T ′ is connected. Denote this by T ′ ⊆ T . Subtrees containing root(T ) are trunks;

otherwise, the root of T ′ is the vertex which was closest to root(T ). If v is a vertex of T ′,

written v ∈ T ′, then descT ′(v) is the number of descendants of v in T ′, including v itself,

and ancT ′(v) is the number of ancestors of v in T ′, including v itself.

Two families of graphs are of special interest here: let Pn be the path of degree n,

where all but one vertex has precisely one child, and Qn be the star of degree n, where the

root has n−1 children, and all non-root vertices have no children. (Again this notation is

non-standard.) In line with the Hopf algebra notation in previous chapters, • indicates the

unique tree with one vertex.

Example 5.3.1. Let T be the tree in Figure 5.2. (The vertex labels are not part of the tree

data, they are merely for easy reference.) Then deg(T ) = 5. Vertex t has two children,

namely u and v; these are both leaves. The star Q3 is a subtree of T in two ways: from
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Figure 5.2: The tree [•Q3]

the vertices {r,s, t}, for which r is the root, and from the vertices {t,u,v}, for which t is

the root. Only the first of these is a trunk. If T ′ is this first copy of Q3, then descT ′(r) =

3,descT ′(t) = 1. The ancestors of u are t and r, so ancT (v) = 2.

Most results concerning the tree-pruning Markov chain will have an inductive proof,

and the key to such arguments is this: given a tree T 6= •, let T1, . . . ,Tf be the connected

components of T after removing the root. (The ordering of the Ti are immaterial.) Follow-

ing [But08], write T := [T1 . . .Tf ]; his Table 300(I) demonstrates how to write every tree

in terms of • (which he calls τ) and repeated applications of this operator. For example,

Q3 = [••], P3 = [•[•]], and Pn = [Pn−1]. The degree 5 tree in Figure 5.2 is [•Q3] = [•[••]].
[Kre99, Sec. 5] then defines the tree factorial recursively:

•! = 1, T ! = deg(T )T1! . . .Tf !.

[But08] calls this the “density” γ(T ) and gives the following equivalent non-recursive ex-

pression:

Proposition 5.3.2. [But08, Thm. 301A.c]

T ! = ∏
v∈T

descT (v)
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Proof. When T = •, this is immediate. For T 6= •, each non-root vertex v ∈ T is a vertex

of precisely one Ti, and descT (v) = descTi(v), so, by inductive hypothesis,

T ! = degT ∏
v1∈T1

descT1(v1) . . . ∏
v f∈Tf

descTf (v f )

= ∏
v∈T

descT (v)

as the root of T has degT descendants.

It is clear from this alternative expression that Pn! = n! (which inspired this notation)

and Qn! = n. Note that these are respectively the largest and and smallest possible values

for T !.

Example 5.3.3. Take T = [•Q3] as pictured in Figure 5.2. Then T != 5•!Q3!= 5 ·1 ·3= 15.

Note that this is also descT (r)descT (s)descT (t)descT (u)descT (v) = 5 ·1 ·3 ·1 ·1.

Finally we are ready to define the Hopf structure on these trees. The basis Bn for the

subspace of degree n is the set of forests with n vertices. The product of two forests is their

disjoint union, thus B is a free-commutative basis, and the corresponding free generating

set is the rooted trees. The coproduct of a tree T is given by

∆(T ) = ∑T\S⊗S,

where the sum runs over all trunks S of T , including the empty tree and T itself, and T\S
is the forest produced by removing from T all edges incident with S (each component is

a cut branch). The root of each cut branch is the vertex which was closest to the root of

T . Extend this definition multiplicatively to define the coproduct on forests: ∆(T1q ·· ·q
Tl) = ∆(T1) . . .∆(Tl). Note that the trunk is always connected, but there may be several cut

branches. Hence H is noncocommutative.

It is not hard to derive a recursive formula for the coproduct of a tree. As above, write

T = [T1 . . .Tf ], where T1, . . . ,Tf are the connected components of T after removing the root.

Then each non-empty trunk S of T has the form S = [S1 . . .S f ] for (possibly empty) trunks

Si of each Ti. The cut branches T\S are then the disjoint union T1\S1q·· ·qTf \S f . So, in
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Figure 5.3: Coproduct of [•Q3]

Sweedler notation (so ∆(Ti) = ∑(Ti)(Ti)(1)⊗ (Ti)(2)), the following holds [CK98, Eq. 50,

51]:

∆([T1 . . .Tf ]) = T ⊗1+ ∑
(T1),...,(Tf )

(T1)(1) . . .(Tf )(1)⊗ [(T1)(2) . . .(Tf )(2)]. (5.3)

Example 5.3.4. Figure 5.3 calculates the coproduct for the tree [•Q3] from Figure 5.2

above. Check this using Equation 5.3. By definition, Q3 = [••] so

∆(Q3) = Q3⊗1+•2⊗•+2•⊗P2 +1⊗Q3.

(This made use of [•] = P2.) Then (recall P3 = [P2]),

∆([•Q3]) = [•Q3]⊗1+•Q3⊗•+•3⊗P2 +2•2⊗P3 +•⊗ [Q3]

+Q3⊗P2 +•2⊗Q3 +2•⊗[P2•]+1⊗ [•Q3].

Example 5.3.5. Consider Pn, the path with n vertices. Its trunks are Pi, 0 ≤ i ≤ n, and the

sole cut branch corresponding to Pi is Pn−i. Hence ∆(Pn) = ∑
n
i=0 Pn−i⊗Pi, which recovers

the independent multinomial rock-breaking process of Section 5.2. Equivalently, h(n)→ Pn

defines an embedding of the algebra of symmetric functions into H .
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5.3.2 Constructing the Chain

To describe the Hopf-power Markov chain on H , it is necessary to first calculate the rescal-

ing function η .

Theorem 5.3.6. For a tree T , the rescaling function has the following “hook-length” for-

mula

η(T ) =
(degT )!

T !
.

Proof. Proceed by induction on the number of vertices of T . The base case: η(•) = 1 = 1!
1 .

Now take T 6= •. As previously, write T = [T1 . . .Tf ], where T1, . . . ,Tf are the connected

components of T after removing the root. View ∆[n] as (ι ⊗ ·· · ⊗ ι ⊗∆)∆[n−1]; then the

rescaling function η counts the ways to break T into singletons by pruning the vertices off

one-by-one. Each such sequence of prunings is completely determined by the sequence of

prunings (also one vertex off at a time) induced on each Ti, and a record of which Ti each

of the first degT −1 vertices came from (as the last vertex removed is the root). Hence

η(T ) =
(

degT −1
degT1 . . .degTf

)
η(T1) . . .η(Tf )

= (degT −1)!
1

T1!
. . .

1
Tf !

=
(degT )!

T !
.

As each tree in a forest breaks independently (Theorem 5.1.1), it suffices to understand

the Markov chain starting from a tree. The below will give two descriptions of this: the

second (Theorem 5.3.8) is generally more natural, but the first view may be useful for some

special starting states; see Example 5.3.7 for the case where the starting states are stars Qn.

Depending on the starting state, one or the other interpretation may be easier to implement

computationally.

The first interpretation is a straightforward application of the three-step description

(Theorem 4.4.1). First take a = 2. Then, starting at a tree T of degree n, one step of

the Hopf-square Markov chain is:

1. Choose i (0≤ i≤ n) according to a symmetric binomial distribution.
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2. Pick a trunk S of T of degree i with probability

η(S)η(T\S)
η(T )

=
1(n
i

) T !
S!(T\S)!

=
1(n
i

)∏
v∈S

descT (v)
descS(v)

.

(The second equality holds because, for v /∈ S, descT\S(v) = descT (v).)

3. Move to T\SqS.

Though it may be more mathematically succinct to combine the first two steps and simply

choose a trunk S (of any degree) with probability 2−n
∏v∈S

descT (v)
descS(v)

, the advantage of first

fixing the trunk size i is that then one only needs to compute descS(v) for trunks S of size i,

not for all trunks.

Example 5.3.7. The star Qn has
(n−1

i−1

)
trunks isomorphic to Qi (2 ≤ i ≤ n), whose cut

branches are respectively •n−i. The empty tree and • are also legal trunks. Since the

non-isomorphic trunks all have different degree, the second step above is trivial: the Hopf-

square Markov chain sees Qn move to Qi•n−i binomially. This corresponds to marking a

corner of a rock and tracking the size of the marked piece under the rock-breaking process

of Section 5.2. Note that this is not the same as removing the leaves of Qn independently,

as Qn has n−1 leaves, not n.

To generalise this interpretation of the ath Hopf-power Markov chain to higher a, make

use of coassociativity: ∆[a] = (ι⊗·· ·⊗ ι⊗∆)∆[a−1].

1. Choose the trunk sizes i1, . . . , ia (with i1 + · · ·+ ia = n) according to a symmetric

multinomial distribution.

2. Choose a trunk S′(2) of T of degree i2+ · · ·+ ia, with probability 1
( n

i1
) ∏v∈S′

(2)

descT (v)
descS′

(2)
(v) .

3. Choose a trunk S′(3) of S′(2) of degree i3 + · · · + ia, with probability

1
(n−i1

i2
)

∏v∈S′
(3)

descS′
(2)

(v)

descS′
(3)

(v) .

4. Continue choosing trunks S′(4),S
′
(5), . . .S

′
(a) in the same way, and move to T\S′(2)q

S′(2)\S
′
(3)q·· ·qS′(a−1)\S

′
(a)qS′(a).
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Here is the second, more natural description of the tree-pruning chain, with a Jeu-de-Taquin

flavour. Its inductive proof is at the end of this section.

Theorem 5.3.8. One step of the ath Hopf-power Markov chain on rooted forests, starting

at a tree T of degree n, is the following process:

1. Uniformly and independently assign one of a colours to each vertex of T .

2. If the root did not receive colour a, but there are some vertices in colour a, then

uniformly select one of these to exchange colours with the root.

3. Look at the vertices v with ancT (v) = 2 (i.e. the children of the root). Are there any of

these which did not receive colour a, but has descendants in colour a? Independently

for each such v, uniformly choose a vertex u amongst its descendants in colour a, and

switch the colours of u and v.

4. Repeat step 3 with vertices v where ancT (v) = 3,4, . . . until the vertices of colour a

form a trunk S(a) (i.e. no vertex of colour a is a descendant of a vertex of a different

colour).

5. Repeat steps 2,3,4 with colours a−1,a−2, . . . ,1 on the cut branches T\S(a) to obtain

S(a−1). (S(a−1) is equivalent to S′(a−1)\S
′
(a) in the alternative “artificial” description

above.)

6. Repeat step 5 to obtain S(a−1),S(a−2), . . . ,S(1). Then move to S(1)qS(2)q·· ·qS(a).

This colour exchange process is very natural if T describes the structure of an organ-

isation, and if a = 2, where colour 1 indicates the members who leave, and colour 2 the

members that stay. Then the recolourings are simply the promotion of members to fill de-

serted positions, with the assumption that the highest positions are replaced first, and that

all members working under the departing member are equally qualified to be his or her

replacement. [Pro09, Sec. 1] describes a related algorithm in a similar way.

Example 5.3.9. Take T = [•Q3], as labelled in Figure 5.2: the root r has two children s

and t, and t has two children u and v. Set a = 2, and let usual typeface denote colour 1, and

boldface denote colour 2. Suppose step 1 above resulted in rstuv. The root did not receive
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colour 2, so, by step 2, either s or u must exchange colours with r. With probability 1
2 , u

is chosen, and the resulting recolouring is rstuv. As {r,s} is a trunk of T , no more colour

switching is necessary, and the chain moves to Q3P2. If instead s had exchanged colours

with r, then the recolouring would be rstuv. Now step 3 is non-trivial, as ancT (t) = 1, and

t is not in colour 2, whilst its descendant u is. Since u is the only descendant of t in colour

2, t must switch colours with u, resulting in rstuv. In this case, the chain moves to (•3)P2.

Proof of Theorem 5.3.8, more natural description of the chain. Let S′(a) ⊆ S′(a−1) ⊆ ·· · ⊆
S′(1) = T be nested trunks, and write S( j) for the cut branches S′( j)\S

′
( j+1). The goal is

to show that, after all colour exchanges,

P{S( j) ends up with colour j for all j}= a−n
a

∏
j=1

∏
v∈S′

( j)

descS′
( j)
(v)

descS′
( j+1)

(v)
,

as this is the probability given by the previous, more artificial, description. Let a′ be maxi-

mal so that S(a′) 6= /0, so a′ is the last colour which appears.

The key is to condition on the colouring of T after the root acquires colour a′ (in the

generic case where a′ = a, this will be after step 2). Call this colouring χ , and notice

that it can be any colouring where the root has colour a′, and degS( j) vertices have colour

j. To reach this colouring after step 2, one of two things must have happened: either the

starting colouring was already χ , or some vertex v that has colour k 6= a′ in χ originally

had colour a′, and the root had colour k, and these colours were switched in step 2. For the

second scenario, there are degT − degS(a′) possible choices of v, and the chance that the

root switched colours with v is 1
degS(a′)

. So

P{colouring after step 2 is χ}= a−n

(
1+

degT −degS(a′)
degS(a′)

)
= a−n degT

degS(a′)
,
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which depends only on degS(a′), the number of vertices with the “last used colour” in χ ,

and not on which colour χ assigns each specific vertex. Consequently,

P{S( j) ends up with colour j for all j}

=∑
χ

P{S( j) ends up with colour j for all j|colouring after step 2 is χ}

×P{colouring after step 2 is χ}

=∑
χ

P{S( j) ends up with colour j for all j|colouring after step 2 is χ}

(
a−n degT

degS(a′)

)
.

(5.4)

To calculate the sum on the right hand side, proceed by induction on degT . Write

T = [T1 . . .Tf ] as usual, and let χi be the induced colourings on the Ti. Then, because all

colour exchanges after step 2 are between a non-root vertex and its descendant,

∑
χ

P{S( j) ends up with colour j for all j|colouring after step 2 is χ}

=
f

∏
i=1

∑
χi

P{S( j)∩Ti ends up with colour j for all j|starting colouring is χi}.

Now note that each starting colouring of Ti has probability a−degTi , so, for each i,

P{S( j)∩Ti ends up with colour j for all j}

=∑
χ

P{S( j)∩Ti ends up with colour j for all j|starting colouring is χi}

×P{starting colouring is χi}

=a−degTi ∑
χ

P{S( j)∩Ti ends up with colour j for all j|starting colouring is χi}.
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By inductive hypothesis, the left hand side is

a−degTi
a

∏
j=1

∏
v∈S′

( j)∩Ti

descS′
( j)∩Ti

(v)

descS′
( j+1)∩Ti

(v)
= a−degTi

a

∏
j=1

∏
v∈S′

( j)∩Ti

descS′
( j)
(v)

descS′
( j+1)

(v)
.

So, returning to (5.4),

P{S( j) ends up with colour j for all j}

=∑
χ

P{S( j) ends up with colour j for all j|colouring after step 2 is χ}

(
a−n degT

degS(a′)

)

=
f

∏
i=1

∑
χi

P{S( j)∩Ti ends up with colour j for all j|starting colouring is χi}

(
a−n degT

degS(a′)

)

=

 f

∏
i=1

a

∏
j=1

∏
v∈S′

( j)∩Ti

descS′
( j)
(v)

descS′
( j+1)

(v)

(a−n degT
degS(a′)

)

=a−n

 a

∏
j=1

∏
v∈S′

( j)∩(∪Ti)

descS′
( j)
(v)

descS′
( j+1)

(v)

 degT
degS(a′)

=a−n
a

∏
j=1

∏
v∈S′

( j)

descS′
( j)
(v)

descS′
( j+1)

(v)
,

since the root is the only vertex not in any Ti, and it is necessarily in S′(a′).

5.3.3 Right Eigenfunctions

The aim of this section is to apply Proposition 5.1.14 to the special right eigenfunctions

fC (C a tree) to bound the probability that the tree-pruning Markov chain can still reach

C • · · ·• after a large number of steps. (C is in capital here in contrast to Section 5.1.3

as lowercase letters typically indicate vertices of trees.) Observe that being able to reach

C • · · ·• is equivalent to containing C as a subtree.

More non-standard notation: for a vertex v in a forest T , let AncT (v) denote the set of

ancestors of v in T , including v itself. So AncT (v) comprises the vertices on the path from

v to the root of the connected component of T containing v, including both endpoints.
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Theorem 5.3.10. Let C 6= • be a tree, and T a forest. Then the right eigenfunction fC, of

eigenvalue a−degC+1, is

fC(T ) =
1

degC! ∑
C⊆T

((
∏

v∈AncT (root(C))

descT (v)
descT (v)−degC+1

)(
∏

v∈C,v6=root(C)

descT (v)

))
,

where the sum is over all subtrees of T isomorphic to C, though not necessarily with the

same root. Moreover,

C! |{C ⊆ T}|
degC!degC

≤ fC(T )≤
(

n′

degC

)
|{C ⊆ T}|

(n′−degC+1)

where |{C ⊆ T}| is the number of subtrees of T isomorphic to C (not necessarily with the

same root), and n′ is the degree of the largest component of T .

The proof is fairly technical, so it is at the end of this section.

Remarks.

1. The second product in the expression for fC(T ) is not C!, since the product is over

vertices of C, but the count is of the descendants in T .

2. The denominators descT (v)− degC + 1 are positive, since, if v ∈ AncT (root(C)),

then all vertices of C are descendants of v.

3. The lower bound above is sharp: let C = [Q3], T = [Q3Pn−4]. Then fC(T ) = 1
4!

n
n−3 ·1 ·

1 ·2 = 1
12

n
n−3 , which has limit 1

12 = 8·1
4!4 = C!|{C⊆T}|

degC!degC , equal to the above lower bound,

as n→ ∞.

4. The upper bound above is attained whenever C and T are both paths. In this case, the

contribution to fC(T ) from the copy of C whose root is distance n− i from root(T )

(0≤ i≤ n−degC) is

1
degC!

n
n−degC+1

n−1
n−degC

. . .
i

i−degC+1
(i−1) . . .(i−degC+1)

=
1

degC!
n(n−1) . . .(n−degC+2) =

(
n

degC

)
1

(n−degC+1)
.
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Combining these bounds on fC(T ) with Proposition 1.1.3.ii gives the first of the two

probability bounds below. The second result uses the universal bound of Proposition 5.1.14.

Corollary 5.3.11. Let {Xm} be the ath Hopf-power tree-pruning chain, started at a forest

T . Write n′ for the degree of the largest component of T . Then

P{Xm ⊇C|X0 = T}

≤E{|{subtrees of Xm isomorphic to C}||X0 = T}

≤a(−degC+1)m degC!degC
C!

fC(T )

≤a(−degC+1)m degC!degC
C!

(
n

degC

)
|{C ⊆ T}|

(n−degC+1)
.

Besides, for any starting distribution on forests of n vertices,

P{Xm ⊇C} ≤ a−degC+1 degC
(

n
degC

)
.

Example 5.3.12. Here is a demonstration of how to calculate with the formulae. Take

T = [•Q3] as in Figure 5.2, and calculate fQ3(T ). As noted in Example 5.3.1, T has two

subgraphs isomorphic to Q3, namely that spanned by {r,s, t} and by {t,u,v}. The set of

ancestors AncT [root(Q3)] is solely r for the first copy of Q3, and for the second copy of Q3,

it is {r, t}. Hence

fQ3(T ) =
1

degQ3!

(
descT (r)

descT (r)−degQ3 +1
descT (s)descT (t)

+
descT (r)

descT (r)−degQ3 +1
descT (t)

descT (z)−degQ2 +1
descT (u)descT (v)

)
=

1
6

(
5
3
·1 ·3+ 5

3
3
1
·1 ·1

)
=

5
3
.

So, after m steps of the Hopf-square pruning chain started at T, the probability that there is

still a vertex with at least two children is at most 2−2m3!2
3

5
3 = 2−2m 20

3 .
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Example 5.3.13. Specialise Corollary 5.3.11 to C = Pj, a path with j vertices. The copies

of Pj in a tree T are in bijection with the vertices of T with at least j ancestors, by sending

a path to its “bottommost” vertex (the one furthest from the root). There can be at most

degT − j+1 vertices with j or more ancestors, so by Corollary 5.3.11,

P{Xm has a vertex with≥ j ancestors|X0 = T}

≤E{|{vertices of Xm with≥ j ancestors}||X0 = T}

≤ a(− j+1)m j
(degT − j+1)

(
degT

j

)
|{vertices of T with≥ j ancestors}|

≤a(− j+1)m j
(

degT
j

)
.

This result holds for any starting state T . In the particular case where T is the path Pn,

this shows that, for the multinomial rock-breaking process of Section 5.2 started at a single

rock of size n,

P{Xm contains a piece of size ≥ j|X0 = (n)} ≤ a(− j+1)m j
(

n
j

)
,

which is looser than the bound in Proposition 5.2.1 by a factor of j.

Example 5.3.14. Take C = Q j , the star with j vertices. Then Xm⊇Q j if and only if Xm has

a vertex with at least j− 1 children. Each vertex with d children is responsible for
( d

j−1

)
copies of Q j, so the two bounds in Corollary 5.3.11 are

P{Xm has a vertex with ≥ j−1 children|X0 = T}

≤E{|{vertices of Xm with≥ j−1 children}||X0 = T}

≤E{|{subtrees of Xm isomorphic to Q j}||X0 = T}

≤ a(− j+1)m j!
degT − j+1

(
degT

j

)
∑
v∈T

(
|{children of v}|

j−1

)
,

P{Xm has a vertex with ≥ j−1 children} ≤ a(− j+1)m j
(

degT
j

)
.
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The first bound is tighter if T has high degree compared to j, and has few vertices with at

least j children.

Proof of Theorem 5.3.10. The following inductive argument proves both the expression for

fC(T ) and the upper bound. To then obtain the lower bound, note that, for any vertex v,
descT (v)

descT (v)−degC+1 ≥ 1, and for a subtree C ⊆ T ,

∏
v∈C,v6=root(T )

descT (v)≥ ∏
v∈C,v6=root(T )

descC(v) =
C!

degC
.

To simply notation, write CT ! for ∏v∈C,v6=root(T ) descT (v), since CC! = 1
degCC!. First,

reduce both the expression for fC(T ) and the upper bound to the case when T is a

tree: the claimed expression for fC(T ) is additive in the sense of Proposition 5.1.13, and( n
degC

) 1
n−degC+1 = n(n− 1) . . .(n− degC + 2) is increasing in n. By definition of fC in

Equation 5.1 and the calculation of η(T ) in Theorem 5.3.6, the goal is to prove

η
C,•,...,•
T +η

•,C,•,...,•
T + · · ·+η

•,...,•,C
T (5.5)

=
(degT −degC+1)!

T ! ∑
C⊆T

((
∏

v∈AncT (root(C))

descT (v)
descT (v)−degC+1

)
CT !

)

≤|{C ⊆ T}|degT !
T !

.

The key is again to write T = [T1 . . .Tf ] and induct on degree. (The base case: when T = •,
both sides are zero, as there are no copies of C in T since C 6= •.) The left hand side

of (5.5) counts the ways to prune T successively so that it results in one copy of C and

singletons. Divide this into two cases: η
•,...,•,C
T counts the successive pruning processes

where C 3 root(T ); the sum of the other coproduct structure constants in (5.5) counts the

successive pruning processes where C 63 root(T ), so C⊆ Ti for some i. The inductive proof
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below handles these cases separately, to show that

η
•,...,•,C
T (5.6)

=
(degT −degC+1)!

T ! ∑
C⊆T

C3root(T )

((
∏

v∈AncT (root(C))

descT (v)
descT (v)−degC+1

)
CT !

)

≤|{C ⊆ T |C 3 root(T )}|degT !
T !

;

η
C,•,...,•
T + · · ·+η

•,...,C,•
T (5.7)

=
(degT −degC+1)!

T ! ∑
C⊆T

C 63root(T )

((
∏

v∈AncT (root(C))

descT (v)
descT (v)−degC+1

)
CT !

)

≤|{C ⊆ T |C 63 root(T )}|degT !
T !

.

Adding these together then gives (5.5).

The argument for (5.7) is simpler (though it relies on (5.5) holding for T1, . . . ,Tf ). The

ways to successively prune T into singletons and one copy of C not containing root(T )

correspond bijectively to the ways to prune some Ti into singletons and one copy of C

(which may contain root(Ti)) and all other Tj into singletons, keeping track of which Tj

was pruned at each step. Hence, writing di for degTi,

η
C,•,...,•
T + · · ·+η

•,...,C,•
T

=∑
i

(
degT −degC

d1 . . .di−1 di−degC+1 di+1 . . .d f

)(
η

C,•,...,•
Ti

++ · · ·+η
•,...,•,C
Ti

)
∏
j 6=i

η(Tj).
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Use Theorem 5.3.6 and the inductive hypothesis of (5.5) to substitute for η(Tj) and

η
C,•,...,•
Ti

++ · · ·+η
•,...,•,C
Ti

respectively:

η
C,•,...,•
T + · · ·+η

•,...,C,•
T (5.8)

=
(degT −degC)!

T1! . . .Tf ! ∑
i

∑
C⊆Ti

C 63root(T )

 ∏
v∈AncTi(root(C))

descTi(v)
descTi(v)−degC+1

CTi!

 ,

and

η
C,•,...,•
T + · · ·+η

•,...,C,•
T

≤(degT −degC)!
T1! . . .Tf ! ∑

i

di!
(di−degC+1)!

|{C ⊆ Ti}|.

To deduce the equality in (5.7), first rewrite the fraction outside the sum in (5.8) as

degT
degT −degC+1

(degT −degC+1)!
T !

.

Then it suffices to show that

degT
degT −degC+1 ∑

i
∑

C⊆Ti
C 63root(T )

 ∏
v∈AncTi(root(C))

descTi(v)
descTi(v)−degC+1

CTi!


= ∑

C⊆T
C 63root(T )

((
∏

v∈AncT (root(C))

descT (v)
descT (v)−degC+1

)
CT !

)
.

Now note that, for C ⊆ Ti, AncT (root(C)) = AncTi(root(C)) ∪ root(T ). For each v ∈
AncTi(root(C)) , descTi(v) = descT (v), and for v= root(T ),

descTi(v)
descT (v)−degC+1 =

degT
degT−degC+1 .

As for the inequality: for each i, di = degTi ≤ degT −1, so

(degT −degC)!di!
(di−degC+1)!

= di(di−1) . . .(di−degC+2)(degT −degC)!≤ (degT −1)!.
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Now turn to the case where C 3 root(T ). Then AncT (root(C)) = root(T ), so (5.6)

simplifies to

η
•,...,•,C
T =

(degT −degC)!
T ! ∑

C⊆T
C3root(T )

∏
v∈C

descT (v)≤ |{C ⊆ T |C 3 root(T )}|degT !
T !

. (5.9)

Here C 3 root(T ) means that C 6⊆ Ti for any i, hence a proof based on T = [T1 . . .Tf ] will

need to consider several C’s (in contrast to the previous paragraph when C did not contain

root(T )). Note first that (5.9) does hold for C = /0 (both sides are zero) and C = • (the

formula for η(T ) as in Theorem 5.3.6) - these cases are not part of the theorem, but are

useful for the proof. For C 6= /0,•, write C = [C1 . . .C f ′]; necessarily f ′≤ f or there would be

no copy of C in T with C 3 root(T ) (then both sides of (5.9) are zero). For ease of notation,

let C f ′+1 = · · · = C f = /0. Recall that η
•,...,•,C
T counts the number of ways to successively

prune vertices from T to leave C. This is equivalent to successively pruning vertices from

each Ti to leave C1 in some Tσ(1), C2 in some Tσ(2), etc, and keeping track of which Ti was

pruned at each step. Thus

η
•,...,•,C
T = ∑

σ

(
degT −degC

degTσ(1)−degC1 . . .degTσ( f )−degC f

)
η
•,...,•,C1
Tσ(1)

. . .η
•,...,•,C f
Tσ( f )

,

where the sum is over one choice of σ ∈ S f for each distinct multiset of pairs{
(C1,T σ(1)), . . . ,(C f ,T σ( f ))

}
. The inductive hypothesis of (5.7) for (Ci,Tσ(i)) then yields

η
•,...,•,C
T = ∑

σ

(degT −degC)!∏
i

∑
Ci⊆Tσ(i)

Ci3root(Tσ(i))

1
Tσ(i)!

∏
v∈Ci

descTσ(i)(v)

=
degT

T ! ∑
C⊆T

C3root(T )

(degT −degC)!
degT ! ∏

v∈C,v6=root(T )
descT (v),

since root(T )=C\qCi, and for each v∈Ci, descTσ(i)(v)= descT (v). To conclude the equal-

ity in (5.9), simply absorb the factor of degT at the front into the product as descT (root(T )).
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Also by the inductive hypothesis,

η
•,...,•,C
T ≤∑

σ

(degT −degC)!∏
i

degTσ(i)!
(degTσ(i)−degCi)!Tσ(i)!

|{Ci ⊆ Tσ(i)|Ci 3 root(Tσ(i))}|

Now
degTσ(i)!

(degTσ(i)−degCi)!
enumerates the ways to choose degCi ordered objects amongst

degTσ(i); choosing such objects for each i is a subset of the ways to choose degC− 1

objects from degT −1. Hence

η
•,...,•,C
T ≤ (degT −1)!

(degT −degC)! ∑
σ

(degT −degC)!∏
i

1
Tσ(i)!

|{Ci ⊆ Tσ(i)|Ci 3 root(Tσ(i))}|

=
degT !

T !
|{C ⊆ T |C 3 root(T )}|

as claimed.



Chapter 6

Hopf-power Markov Chains on Cofree
Commutative Algebras

Sections 6.1 and 6.2 study in detail respectively the chains of riffle-shuffling and of the

descent set under riffle-shuffling. These arise from the shuffle algebra and the algebra of

quasisymmetric functions, which are both cofree and commutative.

6.1 Riffle-Shuffling

Recall from Chapter 1 the Gilbert-Shannon-Reeds model of riffle-shuffling of a deck of

cards: cut the deck binomially into two piles, then choose uniformly an interleaving of the

two piles. The first extensive studies of this model are [AD86, Sec. 4] and [BD92]. They

give explicit formulae for all the transition probabilities and find that 3
2 logn shuffles are

required to mix a deck of n distinct cards. More recently, [ADS11] derives the convergence

rate for decks of repeated cards, which astonishingly depends almost entirely on the total

number of cards and the number of distinct values that they take. The number of cards of

each value hardly influences the convergence rate.

One key notion introduced in [BD92] is the generalisation of the GSR model to a-

handed shuffles, which cuts the deck into a piles multinomially before uniformly interleav-

ing. As Example 4.4.2 showed, a-handed shuffling is exactly the ath Hopf-power Markov

chain on the shuffle algebra S , with respect to its basis of words. In S , the product of two

127
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words is the sum of their interleavings (with multiplicity), and the coproduct of a word is

the sum of its deconcatenations - see Example 4.1.1. As mentioned in Section 4.1, S has

a multigrading: for a sequence of non-negative integers ν , the subspace Sν is spanned by

words where 1 appears ν1 times, 2 appears ν2 times, etc. The Hopf-power Markov chain on

Sν describes shuffling a deck of composition ν , where there are νi cards with face value

i. For example, ν = (1,1, . . . ,1) corresponds to a deck where all cards are distinct, and

ν = (n− 1,1) describes a deck with one distinguished card, as studied in [ADS12, Sec.

2]. Work with the following partial order on deck compositions: ν ≥ ν ′ if νi ≥ ν ′i for all

i. Write |ν | for the sum of the entries of ν - this is the number of cards in a deck with

composition ν . For a word w, let deg(w) denote its corresponding deck composition (this

is also known as the evaluation ev(w)), and |w| = |degw| the total number of cards in the

deck. For example, deg((1233212)) = (2,3,2), and |1233212|= 7. Since the cards behave

equally independent of their values, there is no harm in assuming ν1 ≥ ν2 ≥ ·· · . In other

words, it suffices to work with Hν for partitions ν , though what follows will not make use

of this reduction.

A straightforward application of Theorem 4.5.1 shows that the stationary distribution

of riffle-shuffling is the uniform distribution, for all powers a and all deck compositions ν .

Sections 6.1.1 and 6.1.2 construct some simple right and left eigenfunctions using Parts

B′ and A′ of Theorem 2.5.1 respectively, and Section 6.1.3 gives a partial duality result. All

this relies on the Lyndon word terminology of Section 2.4. Much of the right eigenfunction

analysis is identical to [DPR14, Sec. 5], which studies inverse shuffling as the Hopf-power

Markov chain on the free associative algebra; the left eigenfunction derivations here are

new. In the case of distinct cards, these right and left eigenfunctions have previously ap-

peared in [Sal12, Sec. 4; Den12, Th. 3.6] and [Pik13] respectively. All these examine

the time-reversal of riffle-shuffling in the context of walks on hyperplane arrangements and

their generalisation to left regular bands.

6.1.1 Right Eigenfunctions

Recall from Proposition 3.2.1.R that the right eigenfunctions of a Hopf-power Markov

chain come from diagonalising Ψa on the dual of the underlying Hopf algebra. For the case
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of riffle-shuffling, this dual is the free associative algebra (Example 2.1.2), with concaten-

tation product and deshuffling coproduct. The word basis of the free associative algebra fits

the hypothesis of Theorem 2.5.1.B′. All single letters have degree 1, so there is no need to

apply the Eulerian idempotent, which simplifies the algorithm a little. In order to achieve

∑w fw(v)gw(v) = 1 for some w, with the left eigenbasis gw in Section 6.1.2 below, it will be

necessary to divide the output of Theorem 2.5.1.B′ by an extra factor Z(w), the size of the

stabiliser of Sk(w) permuting the Lyndon factors of w. For example, (31212) has Lyndon

factorisation (3 · 12 · 12), and the stabiliser of S3 permuting these factors comprises the

identity and the transposition of the last two elements, so Z((31212)) = 2.

Coupling this rescaled version of Theorem 2.5.1.B’ with Proposition 3.2.1.R, fw′(w) is

the coefficient of w in:

fw′ := w′ if w′ is a single letter;

fw′ := fu1 fu2− fu2 fu1 if w′ is Lyndon with standard factorisation w′ = u1 ·u2;

fw′ :=
1

Z(w′)k! ∑
σ∈Sk

fuσ(1) . . . fuσ(k) if w′ has Lyndon factorisation w′ = u1 · · · · ·uk.

(The second line is a recursive definition for the standard bracketing.) A visual description

of fw′(w) is two paragraphs below.

fw′ is a right eigenfunction of eigenvalue a−|w
′|+k(w′), where k(w′) is the number of

Lyndon factors of w′. Since the fw′ form an eigenbasis, the multiplicity of the eigenvalue

a−|ν |+k when shuffling a deck of composition ν is the number of words of degree ν with

k Lyndon factors. This has two consequences of note. Firstly, when ν = (1,1, . . . ,1), this

multiplicity is c(|ν |,k), the signless Stirling number of the first kind. Its usual definition is

the number of permutations of |ν | objects with k cycles, which is easily equivalent [Sta97,

Prop. 1.3.1] to the number of words of deg(ν) with k record minima. (The letter i is a

record minima of w if all letters appearing before i in w are greater than i.) This is the

eigenvalue multiplicity because a word with distinct letters is Lyndon if and only if its first

letter is minimal, so the Lyndon factors of a word with distinct letters start precisely at the

record minima.
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Figure 6.1: The trees T(13245) and T(1122)

Secondly, for general ν , the eigenvalues 1,a−1, . . . ,a−|ν |+1 all occur. Each eigenfunc-

tion fw′ of eigenvalue a−|ν |+k corresponds to a word of degree ν with k Lyndon factors, or

equivalently, k Lyndon words whose degrees sum to ν . One way to find such a k-tuple is

to choose a Lyndon word of length |ν | − k+ 1 in which letter i occurs at most νi times,

and take the remaining k− 1 letters of ν as singleton Lyndon factors. How to construct

the non-singleton Lyndon factor depends on ν and k: if |ν |− k > ν1, one possibility is the

smallest |ν |− k+1 values in increasing order. For |ν |− k ≤ ν1, take the word with |ν |− k

1s followed by a 2.

As for the eigenvectors, [GR89, Sec. 2] and [BB90] provide a way to calculate them

graphically, namely via decreasing Lyndon hedgerows. For a Lyndon word u with standard

factorisation u = u1 · u2, inductively draw a rooted binary tree Tu by taking Tu1 as the left

branch and Tu2 as the right branch. Figure 6.1 shows T(13245) and T(1122).

For a Lyndon word u, it follows from the recursive definition of fu above that fu(w) is

the signed number of ways to exchange the left and right branches at some vertices of Tu

so that the leaves of Tu, reading from left to right, spell out w (the sign is the parity of the

number of exchanges required). For example,

• f(13245)((25413)) = 1 since the unique way to rearrange T(13245) so the leaves spell

(25413) is to exchange the branches at the root and the lowest interior vertex;

• f(13245)((21345)) = 0 since in all legal rearrangements of T(13245), 2 appears adjacent

to either 4 or 5, which does not hold for (21345);

• f(1122)((1221)) = 0 as there are two ways to make the leaves of T(1122) spell (1221):

either exchange branches at the root, or exchange branches at both of the other inte-

rior vertices. These two rearrangements have opposite signs, so the signed count of

rearrangements is 0.
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Figure 6.2: The Lyndon hedgerow T(35142)

Now for general w′ with Lyndon factorisation w = u1 · · · · · uk, set Tw′ to be simply

Tu1,Tu2, . . . ,Tuk placed in a row. So T(35142) is the hedgerow in Figure 6.2.

Again fw′(w) is the signed number of ways to rearrange Tw′ so the leaves spell w, divided

by k!. Now there are two types of allowed moves: exchanging the left and right branches

at a vertex (as before), and permuting the trees of the hedgerow. The latter move does not

come with a sign. Thus f(35142)((14253)) = 1
2!(−1), as the unique rearrangement of T(35142)

which spells (14253) requires transposing the trees and permuting the branches of 3 and 5.

The division by Z(w′) in the definition of fw′ means that, if w′ has a repeat Lyndon factor,

then the multiple trees corresponding to this repeated factor are not distinguished, and

transposing them does not count as a valid rearrangement. So if w′= (31212) = (3 ·12 ·12),

then fw′((12312)) = 1
3! .

Writing←−w for the reverse of w, this graphical calculation method shows that fw′(
←−w ) and

fw′(w) differ only in possibly a sign, since switching branches at every interior vertex and

arranging the trees in the opposite order reverses the word spelt by the leaves. The number

of interior vertices of a tree is one fewer than the number of leaves, hence the sign change

is (−1)|w
′|−k(w′), which depends only on the corresponding eigenvalue. In conclusion,

Proposition 6.1.1. Let←−w denote the reverse of w. Then, if f is any right eigenfunction of

a-handed shuffling with eigenvalue a j then f(w) = (−1) jf(←−w ).

Let u be a Lyndon word. In similar notation abuse as in Section 5.1.3, write fu(w) for

the sum of fu evaluated on all consecutive subwords of w whose degree is degu (i.e. on

all consecutive subwords of w whose constituent letters are those of u). For example, in

calculating f(12)((1233212)), the relevant subwords are 1233212, 1233212 and 1233212, so

f(12)((1233212)) = f(12)((12))+ f(12)((21))+ f(12)((12)) = 1−1+1 = 1. It is clear from

the graphical calculation of eigenfunctions that, on any subspace Sν with ν ≥ deg(u),

this new function fu is (|ν | − |u|+ 1)!fw′ where w′ has degree ν and u is its only non-

singleton Lyndon factor. The corresponding eigenvalue is a−|u|+1. For the example above,
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f(12) = (7−2+1)!f(3322121), since (3322121) has Lyndon factorisation (3 ·3 ·2 ·2 ·12 ·1).
The pointwise products of certain fus are also right eigenfunctions, see Proposition 6.1.6 at

the end of this section.

Example 6.1.2. Take the simplest case of u= (i j), where i< j. Then f(i j)(w) is the number

of consecutive subwords (i j) occurring in w, subtract the occurrences of ( ji) as a consecu-

tive subword. In particular, if w has distinct letters, then

f(i j)(w) =


1, if (i j) occurs as a consecutive subword of w;

−1, if ( ji) occurs as a consecutive subword of w;

0, otherwise.

The corresponding eigenvalue is 1
a .

Summing the f(i j) over all pairs i < j gives another right eigenfunction f\, also with

eigenvalue 1
a : f\(w) counts the increasing 2-letter consecutive subwords of w, then subtracts

the number of decreasing 2-letter consecutive subwords. These subwords are respectively

the ascents and descents of w, so denote their number by asc(w) and des(w) respectively.

Note that reversing w turns an ascent into a descent, so f\(w) = −f\(←−w ), as predicted by

Proposition 6.1.1. If w has all letters distinct then the non-ascents are precisely the descents;

this allows Proposition 6.1.3 below to express f\ solely in terms of des(w). (This explains

the notation f\. Descents typically receive more attention in the literature than ascents.)

The claims regarding expected values follow from Proposition 1.1.3.i.

Proposition 6.1.3. The function f\ : Bν → R with formula

f\(w) := asc(w)−des(w)

is a right eigenfunction of a-handed shuffling of eigenvalue 1
a . Hence, if Xm denotes the

deck order after m shuffles,

E{asc(Xm)−des(Xm)|X0 = w0}= a−m(asc(w0)−des(w0)).
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If ν = (1,1, . . . ,1), then f\ is a multiple of the “normalised number of descents”:

f\(w) :=−2
(

des(w)− n−1
2

)
.

So, if a deck of distinct cards started in ascending order (i.e. des(w0) = 0), then

E{des(Xm)|X0 = w0}= (1−a−m)

(
n−1

2

)
.

Similar analysis applies to Lyndon words with three letters:

Example 6.1.4. Fix three letters i < j < k. There are two Lyndon words with three distinct

letters: (i jk) and (ik j). Their standard factorisations are (i · jk) and (ik · j), so

• f(i jk) counts the consecutive subwords (i jk) and (k ji) with weight 1, and (ik j) and

( jki) with weight -1;

• f(ik j) counts the consecutive subwords (ik j) and ( jki) with weight 1, and (ki j) and

( jik) with weight -1.

By inspection, f(i jk) = f(i j)f( jk)+ f(ik)f( jk), f(ik j) = −f(ik)f( jk)+ f(ik)f(i j). (This is unre-

lated to Proposition 6.1.6.) These have eigenvalue a−2.

When all cards in the deck are distinct, certain linear combinations of these again have

a neat interpretation in terms of well-studied statistics on words. The table below lists the

definition of the four relevant statistics in terms of 3-letter consecutive subwords, and the

(non-standard) notation for their number of occurrences in a given word w.
peak peak(w) middle letter is greatest

valley vall(w) middle letter is smallest

double ascent aasc(w) letters are in increasing order

double descent ddes(w) letters are in decreasing order
For example, if w = (1233212), then vall(w) = aasc(w) = ddes(w) = 1 and peak(w) =

0.
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Proposition 6.1.5. The function f∧∨ : Bν → R with formula

f∧∨(w) := peak(w)−vall(w)

is a right eigenfunction of a-handed shuffling of eigenvalue a−2. Hence, if Xm denotes the

deck order after m shuffles,

E{peak(Xm)−vall(Xm)|X0 = w0}= a−2m(peak(w0)−vall(w0)).

If ν = (1,1, . . . ,1), then the following are also right eigenfunctions of a-handed shuffling

of eigenvalue a−2:

f∧(w) := peak(w)− n−2
3

;

f∨(w) := vall(w)− n−2
3

;

f−(w) := aasc(w)+ddes(w)− n−2
3

.

So, if a deck of distinct cards started in ascending order (i.e. peak(w0) = vall(w0) = 0),

then

E{peak(Xm)|X0 = w0}= E{vall(Xm)|X0 = w0}= (1−a−2m)
n−2

3
;

E{aasc(Xm)+ddes(Xm)|X0 = w0}= (1+2a−2m)
n−2

3
.

Proof. From Example 6.1.4 above,

∑
i< j<k

f(i jk)(w) = aasc(w)+ddes(w)−peak(w),

∑
i< j<k

f(ik j)(w) = peak(w)−vall(w) = f∧∨(w)

are right eigenfunctions of eigenvalue a−2. If all cards in the deck are distinct, then

peak(w)+vall(w)+ aasc(w)+ddes(w) = n−2,
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so f∧= 1
3

(
f∧∨−∑i< j<k f(i jk)

)
, f∨= −1

3

(
∑i< j<k f(i jk)+2f∧∨

)
, f−= 1

3

(
2∑i< j<k f(i jk)+ f∧∨

)
are also right eigenfunctions. The statements on expectations follow from Proposition

1.1.3.

Linear combinations of fu for Lyndon u with |u| = 4 provides right eigenfunctions of

eigenvalue a−3 which are weighted counts of consecutive 4-letter subwords of each “pat-

tern”, but these are more complicated.

Here is one final fact about right eigenfunctions, deducible from the graphical calcula-

tion:

Proposition 6.1.6. Let u1, . . . ,u j be Lyndon words each with distinct letters, such that

no letter appears in more than one ui. Then, for any ν ≥ deg(u1) + · · ·+ deg(u j), the

pointwise product f(w) := fu1(w) . . . fu j(w) is a right eigenfunction on Sν of eigenvalue

a−|u1|−···−|u j|+ j; in fact, f = (|ν | − |u1| − · · · − |u j|+ j)!fw′ , where the only non-singleton

Lyndon factors of w′ are precisely u1, . . . ,u j, each occurring exactly once.

Under these same conditions, the corresponding relationship for the left eigenfunctions

of the following section is gu1(w) . . .gu j(w) =
1

Z(w′)gw′ , where again w′ is the word whose

only non-singleton Lyndon factors are precisely u1, . . . ,u j.

Example 6.1.7. Let ν = (2,1,1,1,1) and let w′ = (352141) which has Lyndon fac-

torisation (35 · 2 · 14 · 1). The two non-singleton Lyndon factors (35) and (14) com-

bined have distinct letters, so fw′ =
1

(6−2−2+2)! f(35)f(14). For instance, fw′((114253)) =
1
24 f(35)((114253))f(14)((114253)) = 1

24 (−1)1 =− 1
24 .

6.1.2 Left Eigenfunctions

Now comes a parallel analysis of the left eigenfunctions, which arise from diagonalising

Ψa on the shuffle algebra S . Apply Theorem 2.5.1.A′ to the word basis of S and use

Proposition 3.2.1.L to translate the result: if w′ has Lyndon factorisation u1 · · · · · uk , then

the left eigenfunction gw′(w) =coefficient of w in e(u1) . . .e(uk), where e is the Eulerian

idempotent map:

e(x) = ∑
r≥1

(−1)r−1

r
m[r]

∆̄
[r](x).
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Again, concentrate on the case where only one of the factors is not a single letter. For

a Lyndon word u, let gu(w) be the sum of gu evaluated on all subwords (not necessarily

consecutive) of w whose degree is degu (i.e. on all subwords of w whose constituent letters

are those of u). For example, the relevant subwords for calculating g(12)((1233212)) are

1233212, 1233212, 1233212, 1233212, 1233212, and 1233212. Because e(12) = (12)−
1
2(1)(2) =

1
2((12)−(21)), it follows that g(12)((1233212)) = 4g(12)((12))+2g(12)((21)) =

1
2(4−2) = 1. It follows from the definition of gw′ for general w′ that, on any subspace Sν

with ν ≥ deg(u), this new function gu =
1

Z(w′)gw′ for w′ with degree ν and u its only non-

singleton Lyndon factor, as was the case with right eigenfunctions. (Recall that Z(w′) is

the size of the stabiliser in Sk permuting the Lyndon factors of w′.) The corresponding

eigenvalue is a−|u|+1. For the example above, g(12) =
1

2!2!g(3322121).

Example 6.1.8. Again, start with u = (i j), with i < j. Because e(i j) = (i j)− 1
2(i)( j) =

1
2((i j)− ( ji)), the left eigenfunction g(i j) counts the pairs (i, j) with i appearing before j,

subtracts the number of pairs (i, j) with i occurring after j, then divides by 2. In particular,

if w has distinct letters, then

g(i j)(w) =

1
2 , if i occurs before j in w;

−1
2 , if i occurs after j in w.

The corresponding eigenvalue is 1
a . In general, fu and gu do not count the same subwords.

As before, sum the g(i j) over all pairs i< j to obtain a more “symmetric” left eigenfunc-

tion g\, also with eigenvalue 1
a : g\(w) halves the number of pairs appearing in increasing

order in w minus the number of inversions inv(w), when a pair appears in decreasing order.

These eigenfunctions also feature in [Pik13, Th. 3.2.1]. Out of the
(|w|

2

)
pairs of letters in

w, there are ∑i
((degw)i

2

)
pairs of the same letter, and all other pairs must either appear in

increasing order or be an inversion. This explains:

Proposition 6.1.9. The function g\ : Bν → R with formula

g\(w) :=
1
2

(
|ν |
2

)
− 1

2 ∑
i

(
νi

2

)
− inv(w)
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is a left eigenfunction of a-handed shuffling of eigenvalue 1
a .

There is no terminology for a “non-consecutive peak” in the same way that an inver-

sion is a “non-consecutive descent”, so it is not too interesting to derive an analogue of

Proposition 6.1.5 from g(i jk) and g(ik j).

6.1.3 Duality of Eigenfunctions

Recall from Proposition 1.1.4 that explicit diagonalisation of Markov chains is most useful

when the right and left eigenbases obtained are dual bases. This is almost true of {fw} and

{gw}: ∑v∈Sν
fw′(v)gw(v) = 0 for the large majority of pairs of distinct words w and w′,

but, for ν ≥ (1,1,1,0,0, . . .), there will always be w 6= w′ ∈Sν with ∑v fw′(v)gw(v) 6= 0,

essentially because of Example 6.1.13 below. For ease of notation, write the inner product

〈fw′,gw〉 for ∑v fw′(v)gw(v) .

Theorem 6.1.10. Let w,w′ be words with Lyndon factorisations w = u1 · · · · · uk, w′ = u′1 ·
· · · ·u′k′ respectively. Then

〈fw′,gw〉=

0 if k 6= k′;
1

Z(w′) ∑σ∈Sk
fu′

σ(1)
(u1) . . . fu′

σ(k)
(uk) =

1
Z(w′)fw′(u1 . . .uk) if k = k′.

(Note that u1 . . .uk is the shuffle product of the Lyndon factors, not the concatenation, and

is therefore not equal to w.) In particular, 〈fw,gw〉= 1, and 〈fw′,gw〉 is non-zero only when

there is a permutation σ ∈ Sk such that deg(u′
σ(i)) = deg(ui) for each i, and each ui is

equal to or lexicographically larger than u′
σ(i).

Example 6.1.11. 〈f(23113),g(13123)〉 = 0: the Lyndon factorisations are (23 · 113), which

has degrees (0,1,1) and (2,0,1); and (13 · 123), which has degrees (1,0,1) and (1,1,1).

These degrees do not agree, so the inner product is 0.

Example 6.1.12. 〈f(13213),g(13123)〉= 0: the Lyndon factorisations are (132 ·13) and (13 ·
123), so deg(u′

σ(i)) = deg(ui) is true for i = 1,2 if σ is the transposition. But (123) is

lexicographically smaller than (132).
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Example 6.1.13. Using the Lyndon factorisations in the previous example,

〈f(13123),g(13213)〉= 1
1 f(13)(13)f(123)(132) = 1 ·1(−1) =−1.

Proof of Theorem 6.1.10. As usual, write fw′,gw for the eigenvectors in the free associative

algebra and the shuffle algebra respectively corresponding to fw′ , gw under Proposition

3.2.1. So

fw′ =
1

k′!Z(w′) ∑
σ∈Sk

fu′
σ(1)

. . . fu′
σ(k′)

,

gw = e(u1) . . .e(uk).

If k 6= k′, so w and w′ have different numbers of Lyndon factors, then fw′ and gw are

eigenfunctions with different eigenvalues, so from pure linear algebra, 〈fw′,gw〉 = 0. (A

more detailed explanation is in the penultimate paragraph of the proof of Theorem 5.1.9, at

the end of Section 5.1.3.)

Now assume k = k′. First, take k = 1, so w, w′ are both Lyndon. Then

〈fw′,gw〉= fw′ (e(w))

= fw′

(
w− 1

2
m∆̄w+

1
3

m[3]
∆̄
[3]w− . . .

)
= fw′(w)−

1
2
(∆ fw′)

(
∆̄w
)
+

1
3

(
∆
[3] fw′

)(
∆̄
[3]w
)
− . . .

= fw′(w).

The third equality uses that comultiplication in the free associative algebra is dual to mul-

tiplication in S , and the last step is because fw′ is primitive, by construction.

For the case k > 1, the argument is similar to the third paragraph of the proof of Theo-

rem 5.1.9.

〈fw′ ,gw〉=

(
1

k!Z(w′) ∑
σ∈Sk

fu′
σ(1)

. . . fu′
σ(k)

)
(e(u1) . . .e(uk))

=

(
1

k!Z(w′) ∑
σ∈Sk

∆
[k] fu′

σ(1)
. . .∆[k] fu′

σ(k)

)
(e(u1)⊗·· ·⊗ e(uk)) ,
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as comultiplication in the free associative algebra is dual to multiplication in S . Each fu′
σ(r)

is primitive, so the terms of ∆[k] fu′
σ(r)

are all possible ways to have fu′
σ(r)

in one tensor-factor

and 1 in all other tensor-factors. Hence the right hand side above simplifies to

1
k!Z(w′) ∑

σ∈Sk

∑
τ∈Sk

fu′
τσ(1)

(e(u1)) . . . fu′
τσ(k)

(e(uk))

=
1

Z(w′) ∑
σ∈Sk

fu′
σ(1)

(e(u1)) . . . fu′
σ(k)

(e(uk))

=
1

Z(w′) ∑
σ∈Sk

fu′
σ(1)

(u1) . . . fu′
σ(k)

(uk) ,

using the k = 1 case in the last step. Running this calculation with ui instead of e(ui) reaches

the same conclusion, so 〈fw′,gw〉 must also equal fw′(u1 . . .uk), which is fw′(u1 . . .uk) by

definition (because riffle-shuffling does not require any basis rescaling via η).

Clearly fu′(u) is non-zero only if u and u′ have the same constituent letters, i.e.

deg(u′) = deg(u). Also, [Reu93, Th. 5.1] claims that, for Lyndon u′ and any word u,

the right eigenfunction value fu′(u) is non-zero only if u is lexicographically larger than or

equal to u′.

If w = w′, then u′i = ui for each i, so the condition that each ui is equal to or lexico-

graphically larger than u′σ(i) can only hold when ui = u′σ(i) for all i. The set of σ ∈ Sk

which achieves this is precisely the stabiliser in Sk permuting the ui. So

〈fw,gw〉= fu1 (u1) . . . fuk (uk) ,

and [Reu93, Th. 5.1] states that fu(u) = 1 for all Lyndon words u.

6.2 Descent Sets under Riffle-Shuffling

This section applies the Hopf-power Markov chain machinery to the algebra QSym of qua-

sisymmetric functions (Example 4.1.6) to refine a result of Diaconis and Fulman on the

Markov chain tracking the number of descents under riffle-shuffling of a distinct deck of

cards. (Recall that a descent is a high value card directly on top of a low value card.) The
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result in question is the following interpretations of the right and left eigenfunctions fi and

gi (0≤ i≤ n−1):

• [DF12, Th. 2.1] fi( j) is the coefficient of any permutation with j descents in the ith

Eulerian idempotent;

• [DF12, Cor. 3.2] gi( j) is the value of the jth Foulkes character of the symmetric

group on any permutation with i cycles.

[NT12] recovers these connections using the algebra Sym of noncommutative symmetric

functions, which is dual to QSym.

The first result of the present refinement is the existence of an “intermediate” chain

between riffle-shuffling and the number of descents, namely the position of descents. (This

also follows from the descent set being a “shuffle-compatible statistic”, which [Ges10] at-

tributes to Stanley.) Theorem 6.2.2 identifies this chain as the Hopf-power Markov chain on

the basis of fundamental quasisymmetric functions {FI}. For a deck of n cards, the states

of this descent-set chain naturally correspond to subsets of n− 1, though it will be more

convenient here to instead associate them to compositions of n, recording the lengths be-

tween each pair of descents. A more detailed explanation is in Section 6.2.1. The right and

left eigenfunctions for this chain, coming from Theorem 2.5.1.B′ and 2.5.1.A′ respectively,

are also labelled by compositions. The subset of eigenfunctions with interpretations akin

to the Diaconis-Fulman result correspond to non-decreasing compositions I, which may be

viewed as partitions:

• (Theorem 6.2.3) fI(J) is the coefficient of any permutation with descent set J in the

Garsia-Reutenauer idempotent (of the descent algebra) corresponding to I;

• (Theorem 6.2.10) gI(J) is the value of the ribbon character (of the symmetric group)

corresponding to J on any permutation of cycle type I.

Instructions for calculating these eigenfunctions are in Sections 6.2.4 and 6.2.6 respec-

tively; the computations are entirely combinatorial so they only require the notation in Sec-

tion 6.2.1 below, and are independent of all other sections. The eigenfunctions for general

compositions are considerably more unwieldly.
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The calculation and interpretation of eigenfunctions are but a small piece in the

Diaconis-Fulman collaboration concerning the number of descents under riffle-shuffling.

The first of their series of papers on the topic proves [DF09b, Th. 3.3, 3.4] that 1
2 logn steps

are necessary and sufficient to randomise the number of descents. As an aside, they show

that logn steps are sufficient to randomise the positions of descents, hence the descent-set

Markov chain has a mixing time between 1
2 logn and logn. Their second paper [DF09a]

gives a neat combinatorial explanation that this number-of-descents Markov chain is the

same as the carries observed while adding a list of numbers, a chain previously studied

by [Hol97]. [NS14] finds a carries process which equates to the number of descents un-

der generalised riffle-shuffles. Here the cards can have one of p colours, and the colours

change during shuffling depending on which pile the cards fall into when the deck is cut.

The notion of descent is modified to take into account the colours of the cards. The left

eigenfunctions of the Markov chain on the number of descents correspond to a generalisa-

tion of Foulkes characters in [Mil14]; these are characters of wreath products Z/pZ oSn. An

interesting question for the future is whether the descent set of generalised riffle-shuffles

also forms a Markov chain, with some refinement of these generalised Foulkes characters

describing some of the left eigenfunctions.

Returning to the present, the rest of the chapter is organised as follows: Section 6.2.1

establishes the necessary notation. Section 6.2.2 covers background on the algebra QSym of

quasisymmetric functions and its dual Sym, the noncommutative symmetric functions, nec-

essary for the proofs and for computing the “messy” eigenfunctions. Section 6.2.3 shows

that the descent set is indeed a Markov statistic for riffle-shuffling, by creating a Hopf mor-

phism S → QSym and appealing to the projection theory of Hopf-power Markov chains

(Section 4.7). Sections 6.2.4 and 6.2.6 detail the right and left eigenfunctions correspond-

ing to partitions, while Sections 6.2.5 and 6.2.7 contain the full eigenbasis and the proofs

of the relationships to ribbon characters and Garsia-Reutenauer idempotents. Section 6.2.8

addresses a partial duality between the two eigenbases, recovering a weak version of a

result of Stanley on the probability that a deck in ascending order acquires a particular de-

scent composition after m shuffles. Section 6.2.9 is an appendix containing the transition

matrix and full eigenbases for the case n = 4. The main results of this section previously

appeared in the extended abstract [Pan13].
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6.2.1 Notation regarding compositions and descents

For easy reference, this section collects all notation relevant to the rest of this chapter.

A composition I is a list of positive integers
(
i1, i2, . . . , il(I)

)
. Each i j is a part of I. The

sum i1 + · · ·+ il(I) is denoted |I|, and l(I) is the number of parts in I. So |(3,5,2,1)| =
11, l((3,5,2,1)) = 4. Forgetting the ordering of the parts of I gives a multiset λ (I) :={

i1, . . . , il(I)
}

. Clearly λ (I) = λ (I′) if and only if I′ has the same parts as I, but in a different

order. I is a partition if its parts are non-increasing, that is, i1 ≥ i2 ≥ ·· · ≥ il(I).

The following two pictorial descriptions of compositions will come in useful for cal-

culating right and left eigenfunctions respectively. Firstly, the diagram of I is a string of

|I| dots with a division after the first i1 dots, another division after the next i2 dots, etc.

Next, the ribbon shape of I is a skew-shape (in the sense of tableaux) with i1 boxes in the

bottommost row, i2 boxes in the second-to-bottom row, etc, so that the rightmost square of

each row is directly below the leftmost square of the row above. Hence this skew-shape

contains no 2-by-2 square. The diagram and ribbon shape of (3,5,2,1) are shown below.

· · ·| · · · · · | · ·|·

There is a natural partial ordering on the collection of compositions {I| |I|= n} - define

J ≥ I if J is a refinement of I. Then I is a coarsening of J.

Given compositions I, J with |I|= |J|, [Gel+95, Sec. 4.8] defines the decomposition of

J relative to I as the l(I)-tuple of compositions
(

JI
1, . . . ,J

I
l(I)

)
such that |JI

r | = ir and each

l(JI
r) is minimal such that the concatenation JI

1 . . .J
I
l(I) refines J. Pictorially, the diagrams

of JI
1, . . . ,J

I
l(I) are obtained by “splitting” the diagram of J at the points specified by the

divisions in the diagram of I. For example, if I = (4,4,3) and J = (3,5,2,1), then JI
1 =

(3,1), JI
2 = (4), JI

3 = (2,1).

It will be useful to identify the composition I with the word i1 . . . il(I); then it makes

sense to talk of Lyndon compositions, factorisations into Lyndon compositions, and the

other concepts from Section 2.4. Write I = I(1) . . . I(k) for the Lyndon factorisation of I;

so, if I = (3,5,2,1), then I(1) = (3,5), I(2) = (2), I(3) = (1). k(I) will always denote the

number of Lyndon factors in I. A composition I is a partition precisely when all its Lyndon
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factors are singletons - this is what simplifies their corresponding eigenfunctions. λ (I) is

the multigrading of I as a word, and l(I) is the integer grading, though neither agrees with

the grading |I| on QSym so this view may be more confusing than helpful.

Finally, the descent set of a word w = w1 . . .wn is defined to be

D(w) =
{

j ∈ {1,2, . . . , |w|−1}|w j > w j+1
}

. As noted earlier, it is more convenient here

to consider the associated composition of D(w). Hence a word w has descent composition

Des(w) = I if i j is the number of letters between the j− 1th and jth descent, i.e. if

wi1+···+i j > wi1+···+i j+1 for all j, and wr ≤ wr+1 for all r 6= i1 + · · ·+ i j. For example,

D(4261) = {1,3} and Des(4261) = (1,2,1). Note that no information is lost in passing

from D(w) to Des(w), as the divisions in the diagram of Des(w) indicate the positions of

descents in w.

6.2.2 Quasisymmetric Functions and Noncommutative Symmetric
Functions

Recall from Example 4.1.6 the algebra QSym of quasisymmetric functions: it is a subal-

gebra of the algebra of power series in infinitely-many commuting variables {x1,x2, . . .}
spanned by the monomial quasisymmetric functions

MI = ∑
j1<···< jl(I)

xi1
j1 . . .x

il(I)
jl(I)

.

The basis runs over all compositions I = (i1, . . . , il(I)). This, however, is not the state space

basis of the Markov chain of interest; that basis is the fundamental quasisymmetric func-

tions

FI = ∑
J≥I

MJ

where the sum runs over all partitions J refining I. QSym inherits a grading and a com-

mutative algebra structure from the algebra of power series, so deg(MI) = deg(FI) = |I|.
[MR95] extends this to a Hopf algebra structure using the “alphabet doubling” coproduct:

take two sets of variables X = {x1,x2, . . .}, Y = {y1,y2, . . .} that all commute, and totally-

order X ∪Y by setting xi < x j if i < j, yi < y j if i < j, and xi < y j for all i, j. Then, if F(x,y)
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denotes the quasisymmetric function F applied to X ∪Y , and F(x,y) = ∑i Gi(x)Hi(y), then

∆(F) = ∑i Gi⊗Hi. For example, ∆(Mi) = Mi⊗1+1⊗Mi, and

∆(MI) =
l(I)

∑
j=0

M(i1,i2,...,i j)⊗M(i j+1,...,il(I)).

The graded dual Hopf algebra of QSym is Sym, the algebra of noncommutative symmetric

functions. (Some authors call this NSym. Beware that there are several noncommutative

analogues of the symmetric functions, such as NCSym, and these are not all isomorphic.)

A comprehensive reference on this algebra is [Gel+95] and its many sequels. The notation

here follows this tome, except that all indices of basis elements will be superscripts, to

distinguish from elements of QSym which use subscripts. The duality of Sym and QSym

was first established in [MR95, Th. 2.1].

[NPT13, Sec. 2] frames Sym under the polynomial realisation viewpoint previously

discussed in Section 4.1.3. The construction starts with the power series algebra in

infinitely-many noncommuting variables. For simplicity, write the word (i1 . . . il) for the

monomial xi1 . . .xil ; so, for example, (12231) stands for x1x2
2x3x1. As an algebra, Sym is a

subalgebra of this power series algebra generated by

S(n) := ∑
w:Des(w)=(n)

w,

the sum over all words of length n with no descent. For example,

S(1) = (1)+(2)+(3)+ · · ·= x1 + x2 + x3 + . . . ;

S(2) = (11)+(12)+(13)+ · · ·+(22)+(23)+ . . . .

The algebra Sym inherits a concatenation product from the full power series algebra, and

the alphabet doubling trick endows Sym with the coproduct

∆(S(n)) =
n

∑
i=0

S(i)⊗S(n−i).
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For any composition I = (i1, . . . , il), define the complete noncommutative symmetric func-

tions

SI := S(i1) . . .S(il) = ∑
w:Des(w)≤I

w.

A moment’s thought will convince that {SI} is linearly independent. So {SI} is a free ba-

sis in the sense of Theorem 2.5.1.B′; it is analogous to the {hλ} basis of the symmetric

functions. Indeed, the abelianisation map from the noncommutative power series ring to

R[[x1,x2, . . . ]] (i.e. allowing the variables xi to commute) sends each S(n) to h(n), and conse-

quently sends SI to hλ (I). The basis {SI} is dual to the monomial quasisymmetric functions

{MI}.
The dual basis to the fundamental quasisymmetric functions {FI} is the ribbon non-

commutative symmetric functions {RI}:

RI := ∑
w:Des(w)=I

w.

One more basis will be useful in the ensuing analysis. [Gel+95, Eq. 26] defines Φ(n)

n to

be the coefficient of tn in the formal power series log(1+∑i>0 S(i)t i). Equivalently,

Φ
(n) := ne(S(n)) = n∑

I

(−1)l(I)

l(I) ∑
w:Des(w)≤I

w,

where e is the Eulerian idempotent map. This is a noncommutative analogue of the re-

lationship e(h(n)) =
1
n p(n), established in Section 5.2.3. Noncommutativity of the under-

lying variables means that there is sadly no formula for the Φ(n) quite as convenient as

p(n) = xn
1 + xn

2 + . . . . Then the power sum noncommutative symmetric functions of the sec-

ond kind are

Φ
I := Φ

(i1) . . .Φ(il).

[Gel+95] details explicitly the change-of-basis matrices of these and other bases in

Sym; these will be extremely useful in Sections 6.2.4 and 6.2.5 for determining the right

eigenfunctions of the associated Markov chain.
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6.2.3 The Hopf-power Markov chain on QSym

Solely from the above definitions of the fundamental quasisymmetric functions, the product

and the coproduct, it is unclear what process the Hopf-power Markov chain on {FI} might

represent. The key to solving this mystery is the following Hopf morphism, which sends

any word with distinct letters to the fundamental quasisymmetric function indexed by its

descent set.

Theorem 6.2.1. There is a morphism of Hopf algebras θ : S → QSym such that, if w is a

word with distinct letters, then θ(w) = FDes(w).

The proof is at the end of this section. Applying the Projection Theorem for Hopf-

power Markov Chains (Theorem 4.7.1) to the map θ shows that:

Theorem 6.2.2. The Hopf-power Markov chain on the fundamental quasisymmetric func-

tions {FI} tracks the descent set under riffle-shuffling of a distinct deck of cards. In partic-

ular, the descent set is a Markovian statistic of riffle-shuffling of a distinct deck of cards.

In order to keep the algebra in the background, the subsequent sections will refer to this

chain simply as the Hopf-power Markov chain on compositions, and the states of the chain

will be labelled by compositions I instead of the corresponding quasisymmetric functions

FI . This is similar to the notation of Section 5.2.

Proof of Theorem 6.2.2. Follow the notation of the Projection Theorem and write B for

the word basis of the shuffle algebra, and B̄ for the fundamental quasisymmetric functions.

Then, for any ν where each νi is 0 or 1, Bν consists of words with distinct letters, so the

map θ from Theorem 6.2.1 satisfies θ(Bν) = B̄|ν |. Moreover, θ sends all single letters to

F1 = B̄1. Hence the conditions of the Projection Theorem hold, and its application proves

the result.

Proof of Theorem 6.2.1. By [ABS06, Th. 4.1], QSym is the terminal object in the category

of combinatorial Hopf algebras equipped with a multiplicative character. So, to define a

Hopf morphism to QSym, it suffices to define the corresponding character ζ on the domain.

By [Reu93, Th. 6.1.i], the shuffle algebra is freely generated by Lyndon words, so any
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choice of the values of ζ on Lyndon words extends uniquely to a well-defined character on

the shuffle algebra. For Lyndon u, set

ζ (u) =

1 if u has all letters distinct and has no descents;

0 otherwise.
(6.1)

I claim that, consequently, (6.1) holds for all words with distinct letters, even if they are not

Lyndon. Assuming this for now, [ABS06, Th. 4.1] defines

θ(w) = ∑
I:|I|=|w|

ζ (w1 · · · · ·wi1)ζ (wi1+1 · · · · ·wi1+i2) . . .ζ (wil(I)−1+1 · · · · ·wn)MI.

If w has distinct letters, then every consecutive subword wi1+···+i j+1 · · · · ·wi1···+i j+1 of w

also has distinct letters, so

ζ (w1 · · · · ·wi1) . . .ζ (wil(I)−1+1 · · · · ·wn) =

1 if Des(w)≤ I;

0 otherwise.

Hence θ(w) = ∑Des(w)≤I MI = FDes(w).

Now return to proving the claim that (6.1) holds whenever w has distinct letters. Pro-

ceed by induction on w, with respect to lexicographic order. [Reu93, Th. 6.1.ii], applied

to a word w with distinct letters, states that: if w has Lyndon factorisation w = u1 · · · · ·uk,

then the product of these factors in the shuffle algebra satisfies

u1 . . .uk = w+ ∑
v<w

αvv

where αv is 0 or 1. The character ζ is multiplicative, so

ζ (u1) . . .ζ (uk) = ζ (w)+ ∑
v<w

αvζ (v). (6.2)

If w is Lyndon, then the claim is true by definition; this includes the base case for the

induction. Otherwise, k > 1 and there are two possibilities:
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• None of the uis have descents. Then the left hand side of (6.2) is 1. Since the uis

together have all letters distinct, the only way to shuffle them together and obtain a

word with no descents is to arrange the constituent letters in increasing order. This

word is Lyndon, so it is not w, and, by inductive hypothesis, it is the only v in the

sum with ζ (v) = 1. So ζ (w) must be 0.

• Some Lyndon factor ui has at least one descent. Then ζ (ui) = 0, so the left hand

side of (6.2) is 0. Also, no shuffle of u1, . . . ,uk has its letters in increasing order.

Therefore, by inductive hypothesis, all v in the sum on the right hand side have

ζ (v) = 0. Hence ζ (w) = 0 also.

Remarks.

1. From the proof, one sees that the conclusion θ(w) =FDes(w) for w with distinct letters

relies only on the value of ζ on Lyndon words with distinct letters. The proof took

ζ (u) = 0 for all Lyndon u with repeated letters, but any other value would also work.

Alas, no definition of ζ will ensure θ(w) = FDes(w) for all w:

θ((11)) =
1
2

θ((1)(1)) =
1
2

θ(1)θ(1) =
1
2

M2
1 6= F2.

2. The map θ is inspired by, but ultimately mathematically unrelated to, the polynomial

realisation of Sym. Dualising the algebra embedding Sym ⊆S ∗ gives a coalgebra

map θ ′ : S → QSym, with θ ′(w) = FDes(w) for all w, but this is not a Hopf algebra

map. Mysteriously and miraculously, if all letters occurring in v and w together are

distinct, then θ ′(vw) = θ ′(v)θ ′(w), and doctoring the image of θ ′ on words with

repeated letters can make this true for all v,w. I have yet to find another combinato-

rial Hopf algebra H where the coalgebra map θ ′ : S →H dual to a polynomial

realisation H ∗ ⊆S ∗ satisfies θ ′(vw) = θ ′(v)θ ′(w) for a large class of v,w ∈S .

6.2.4 Right Eigenfunctions Corresponding to Partitions

Throughout this subsection, let I be a partition. That is, i1 ≥ i2 ≥ ·· · ≥ il(I). Set n = |I|.
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All right eigenfunctions are essentially built from the function

f(J) :=
1
|J|

(−1)l(J)−1( |J|−1
l(J)−1

) .

Note that f(J) depends only on |J| and l(J)−1, which are respectively the number of dots

and the number of divisions in the diagram of J.

Theorem 6.2.3 below gives the formula for fI , the right eigenfunction corresponding

to the partition I, in terms of f. The proof is at the end of the following section, after

establishing the full eigenbasis. The scaling of these eigenfunctions differs from that in

Theorem 2.5.1.B′ in order to connect them to the idempotents EI defined by [GR89, Sec.

3], of the descent algebra. (The descent algebra is the subalgebra of the group algebra ZSn

spanned by sums of permutations with the same descent sets. Hence each EI is a linear

combination of permutations, where permutations with the same descent set have the same

coefficient.)

Theorem 6.2.3. With f as defined above, the function

fI(J) :=
1

l(I)! ∑
I′:λ (I′)=λ (I)

l(I′)

∏
r=1

f(Jr)

=
1

l(I)!i1 . . . il(I)
∑

I′:λ (I′)=λ (I)

l(I′)

∏
r=1

(−1)l(Jr)−1( |Jr|−1
l(Jr)−1

) ,

is a right eigenfunction of eigenvalue al(I)−n of the ath Hopf-power Markov chain on com-

positions. (Here (J1, . . . ,Jl(I′)) is the decomposition of J with respect to I′.) The numbers

fI(J) appear as coefficients in the Garsia-Reutenauer idempotent EI:

EI = ∑
σ∈Sn

fI(Des(σ))σ .

(Here, Des(σ) is the descent composition of the word whose ith letter is σ(i) - that is, the

word given by σ in one-line notation.)



CHAPTER 6. CHAINS ON COFREE COMMUTATIVE ALGEBRAS 150

Remark. The sum of EI across all I with i parts is the ith Eulerian idempotent, in which the

coefficients of a permutation σ depend only on its number of descents. Hence ∑l(I)=i fI is

a right eigenfunction of eigenvalue ai−n whose value depends only on l(J), the number of

parts. The n such eigenfunctions descend to the right eigenbasis of [DF12, Th. 2.1] for the

number of descents under riffle-shuffling.

Here is a more transparent description of how to calculate fI(J):

1. Split the diagram of J into pieces whose numbers of dots are the parts of I, with

multiplicity.

2. Calculate f on each piece of J by counting the number of dots and divisions and

multiply these f values together.

3. Sum this number across all decompositions of J in step 1, then divide by l(I)!.

Note that f itself, when restricted to compositions of a fixed size, is a right eigenfunction,

that corresponding to the partition with a single part. Its eigenvalue is a1−n, the smallest

possible.

Example 6.2.4. Here’s how to apply the algorithm above to calculate f(4,4,3)((3,5,2,1)).
There are three relevant decompositions of (3,5,2,1):

· · ·| · · · · · · · | · · · ·| · · · · · | · ·| · · · · · · · · · | · ·|·

so

f(4,4,3)((3,5,2,1)) =
1
3!

(
−1

4
(3

1

) 1
4
−1

3
(2

1

) + −1

4
(3

1

) 1
3

1

4
(3

2

) + 1
3

1
4

1

4
(3

2

))=
7

5184
.

Note that f((1)) = 1, so pieces of size one do not contribute to step 2 of the algorithm

above. This observation simplifies the calculation of f(i1,1,1,...,1)(J), in a similar way to the

fu of Section 6.1.1: f(i1,1,1,...,1)(J) is the sum of f evaluated on the “subcompositions” of J

formed by i1 consecutive dots. In other words, f(i1,1,1,...,1) is the weighted enumeration of

“patterns” of length i1, where pattern J has weight f (J)
(n−i1+1)! . In the similar notational abuse

as Section 6.1.1, call this eigenfunction f(i). (The parallels end here: products of f(i) are not

eigenfunctions, that fact is particular to riffle-shuffling.)
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Each right eigenfunction fI has a lift to the riffle-shuffle chain: that is, the function

f̃I(w) := fI(Des(w)) for words w with distinct letters is a right eigenfunction for riffle-

shuffling. (This is a general fact about projections of Markov chains and is unrelated to

Hopf algebras, see [LPW09, Lem. 12.8.ii]). As divisions correspond to descents, f̃(i) is a

weighted enumeration of “up-down-patterns” of length i.

Example 6.2.5. Take i = 2, then each subcomposition is either (2) or (1,1). Since f((2)) =
1
2 and f((1,1)) =−1

2 , the right eigenfunction f(2) counts a non-divison with weight 1
2(n−1)!

and a division with weight −1
2(n−1)! . Since the number of non-divisions and the number of

divisions sum to n−1,

f(2)(J) =
1

(n−1)!

(
|J|−1

2
− (l(J)−1)

)
.

It will follow from the full eigenbasis description of Theorem 6.2.7 that this is the unique

right eigenvector of eigenvalue 1
a , up to scaling. Its lift f̃(2) to the riffle-shuffling chain

is (a multiple of) the “normalised number of descents” eigenvector of Proposition 6.1.3:

f̃(2) = 1
2(n−1)! f\.

Example 6.2.6. Take i = 3. Then f((3)) = f((1,1,1)) = 1
3 , f((2,1)) = f((1,2)) = −1

6 , so

f(3)(J) =
1

3(n−2)!

(
# (two consecutive non-divisions)+# (two consecutive divisions)

− 1
2

#(division followed by non-division)− 1
2

#(non-division followed by division)
)
.

The associated eigenvalue is 1
a2 . Its lift f̃(3) to the riffle-shuffling chain is

f̃(3)(w) =
1

3(n−2)!

(
aasc(w)+ddes(w)− 1

2
vall(w)− 1

2
peak(w)

)
=

1
2(n−2)!

f−

in the notation of Proposition 6.1.5.
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6.2.5 A full Basis of Right Eigenfunctions

When I is not a partition, the calculation of fI(J) is very similar to the previous three-step

process, except that, in the last step, each summand is weighted by fSI (I′), the value on I′

of the right eigenfunction fSI of riffle-shuffling.

Theorem 6.2.7. Given a composition I = (i1, . . . , il) with k(I) Lyndon factors, define the

function

fI(J) :=
1

i1 . . . il(I)
∑

I′:λ (I′)=λ (I)
fSI (I′)

l(I′)

∏
r=1

(−1)l(Jr)−1( |Jr|−1
l(Jr)−1

) ,

where (J1, . . . ,Jl(I′)) is the decomposition of J relative to I′, and fSI is the right eigen-

function of riffle-shuffling corresponding to the word i1 . . . il , as explained in Section 6.1.1.

Then {fI| |I|= n, I has k Lyndon factors} is a basis of right ak−n-eigenfunctions for the ath

Hopf-power Markov chain on compositions.

The proof is at the end of this section.

Example 6.2.8. Take I = (1,2,1) and J = (3,1). Using the decreasing Lyndon hedgerows

technique of Section 6.1.1, one finds that fS(1,2,1)((1,1,2)) =
1
2 , fS(1,2,1)((2,1,1)) =−

1
2 , and

fS(1,2,1) is zero on all other compositions. The decomposition of (3,1) relative to (1,1,2)

and (2,1,1) are ((1),(1),(1,1)) and ((2),(1),(1)) respectively. Putting all this information

into the formula in Theorem 6.2.7 above yields

f(1,2,1)((3,1)) =
1

1 ·2 ·1

(
1
2
·1(−1)− 1

2
·1 ·1

)
=−1

2
.

The full right eigenbasis for the case n = 4, as specified by Theorem 6.2.7, is tabulated in

Section 6.2.9.

The following property of the right eigenfunctions will be useful for proving Proposi-

tion 6.2.18. It essentially says that, if the starting state is the one-part partition, then only the

right eigenfunctions corresponding to partitions are relevant. When interpreting this chain

on compositions as the descent-set chain under riffle-shuffling, this scenario corresponds

to starting the deck in ascending order.
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Proposition 6.2.9. If I is a partition, then fI((n))= 1
Z(I)i1...il

, the proportion of permutations

in Sn with cycle type I. For all other I, fI((n)) = 0.

Proof. First note that the decomposition of (n) relative to any composition I is

((i1), . . . ,(il(I))), so

fI((n)) =
1

i1 . . . il(I)
∑

I′:λ (I′)=λ (I)
fSI (I′).

Recall from Section 6.1.1 that k(I)!fSI (I′) is the signed number of ways to rearrange the

decreasing Lyndon hedgerow TI so the leaves spell I′. So k(I)!∑I′:λ (I′)=λ (I) fSI (I′) is the

total signed number of rearrangements of TI . If I is a partition, then TI consists only of

singletons, so the rearrangements of TI are exactly the orbit of Sk(I) permuting the Lyndon

factors of I, and these all have positive sign. Writing Z(I) for the size of the stabiliser of

this Sk action, it follows that

fI((n)) =
1

i1 . . . il(I)

1
k(I)!

k(I)!
Z(I)

=
1

Z(I)i1 . . . il(I)
.

By [Sta97, Prop. 1.3.2], Z(I)i1 . . . il(I) is the size of the centraliser in Sn of a permutation

with cycle type I, so its reciprocal is the proportion of permutations with cycle type I.

If I is not a partition, then I has a Lyndon factor which is not a single part. So TI

has an internal vertex, allowing the following “signed involution” trick: exchanging the

branches at this vertex gives a bijection between rearrangements of opposite signs. So

∑I′:λ (I′)=λ (I) fSI (I′) = 0.

Proof of Theorem 6.2.7, the full right eigenbasis. By Proposition 3.2.1.R, the right eigen-

functions of the Hopf-power Markov chain on compositions come from the eigenvectors

of the Hopf-power map on the dual Hopf algebra Sym. Sym is cocommutative and has the

complete noncommutative symmetric functions SI as a word basis, so Theorem 2.5.1.B′

applies. Specifically, use the alternate formulation of the eigenvectors in the ensuing Re-

mark 3 involving the right eigenfunctions fS of riffle-shuffling, and input the result into

Proposition 3.2.1.R. The resulting basis of right eigenfunctions for the descent-set chain is

fI(J) := ∑
I′:λ (I′)=λ (I)

fSI (I′)e(S(i
′
1)) . . .e(S(i

′
l(I))) evaluated at FJ.
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(Recall that e is the Eulerian idempotent map.) Since the basis of ribbon noncommutative

symmetric functions
{

RJ} is the dual basis to the fundamental quasisymmetric functions

{FJ}, the above is equivalent to

fI(J) = coefficient of RJ in ∑
I′:λ (I′)=λ (I)

fSI (I′)e(S(i
′
1)) . . .e(S(i

′
l(I)))

Now Section 6.2.2 defines Φ(n) to be ne(S(n)), so

fI(J) = coefficient of RJ in ∑
I′:λ (I′)=λ (I)

fSI (I′)
ΦI′

i′1 . . . i
′
l(I)

= coefficient of RJ in
1

i1 . . . il(I)
∑

I′:λ (I′)=λ (I)
fSI (I′)ΦI′,

and [Gel+95, Cor. 4.28] gives the coefficient of RJ in ΦI′ as

l(I′)

∏
r=1

(−1)l(Jr)−1( |Jr|−1
l(Jr)−1

) .

Proof of Theorem 6.2.3, right eigenfunctions corresponding to partitions. Fix a partition I.

The decreasing Lyndon hedgerow TI consists only of singletons, so, for any I′ with λ (I′) =

λ (I), there is only one rearrangement of TI spelling I′, and it has positive sign. So fSI (I′) =
1

k(I)! =
1

l(I)! .

[KLT97, Sec. 3.3] then states that ∑ fI(J)RJ is the image of EI under their map α from

the descent algebra to Sym sending ∑σ :Des(σ)=I σ to the ribbon noncommutative symmetric

function RI . As this map is injective, it must be that EI = ∑σ∈Sn fI(Des(σ))σ .

6.2.6 Left Eigenfunctions Corresponding to Partitions

Throughout this section, let I be a partition with |I| = n. The left eigenfunctions gI are

most concisely defined using some representation theory of the symmetric group Sn, al-

though their calculation is completely combinatorial. [CSST10, Sec. 3.5.2] describes a



CHAPTER 6. CHAINS ON COFREE COMMUTATIVE ALGEBRAS 155

representation of Sn for each skew-shape with n boxes; denote by χJ the character of such

a representation whose skew-shape is the ribbon shape of J.

Theorem 6.2.10. Let I be a partition. Define gI(J) := χJ(I), the character of Sn asso-

ciated to the ribbon shape J evaluated at a permutation with cycle type I. Then gI is a

left eigenfunction of the ath Hopf-power Markov chain on compositions with eigenvalue

al(I)−n.

Remark. Here’s how to recover from this the left eigenfunctions of the chain tracking the

number of descents. As observed in [Pik13, Th. 1.3.1.3], any left eigenfunction g of a

Markov chain induces a left eigenfunction ḡ on its projection, by summing over the values

of g on its preimage. Here, this construction gives

ḡI( j) = ∑
l(J)= j

χ
J(I),

and ∑l(J)= j χJ is by definition the Foulkes character. Hence these induced eigenfunctions

are precisely those calculated in [DF12, Cor. 3.2].

By Theorem 6.2.10, calculating the eigenfunctions gI for partitions I amounts to evalu-

ating characters of the symmetric group, for which the standard method is the Murnaghan-

Nakayama rule. This rule simplifies when the character in question corresponds to a ribbon

shape; as noted in [CSST10, Rem. 3.5.18], finding χJ(I) requires the following:

1. Find all possible ways of filling the ribbon shape of J with i1 copies of 1, i2 copies

of 2, etc. such that all copies of each integer are in adjacent cells, and all rows and

columns are weakly increasing.

2. Let lr be the number of rows containing r. Sum over all the fillings found in step 1,

weighted by (−1)Σ(lr−1).

Example 6.2.11. Calculating g(4,4,3)((3,5,2,1)) requires filling the ribbon shape of

(3,5,2,1) with four copies of 1, four copies of 2 and three copies of 3, subject to the

constraints in step 1 above. Observe that the top square cannot be 1, because then the top

four squares must all contain 1, and the fifth square from the top must be equal to or smaller
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than these. Similarly, the top square cannot be 3, because then the top three squares are all

3s, but the fourth must be equal or larger. Hence 2 must fill the top square, and the only

legal way to complete this is
2

2 2
1 1 1 1 2

3 3 3
so

g(4,4,3)((3,5,2,1)) = (−1)(0+2+0) = 1.

Example 6.2.12. There is only one way to fill any given ribbon shape with n copies of 1,

so

g(n)(J) = (−1)l(J).

Next, take I = (1,1, . . . ,1). Then g(1,1,...,1) has eigenvalue an−n = 1, so g(1,1,...,1) is a

multiple of the stationary distribution. (The full left eigenbasis of Theorem 6.2.14 will

show that the stationary distribution is unique). Following the algorithm for gI(J) above,

g(1,1,...,1) is the signed enumeration of fillings of the ribbon shape of J by 1,2, . . . ,n, each

appearing exactly once. Reading the fillings from bottom left to top right gives a word of

degree (1,1, . . . ,1) whose descent composition is exactly J. In conclusion:

Corollary 6.2.13. The stationary distribution for the Hopf-power Markov chain on com-

positions is

π(J) =
1
n!
|{w| |w|= n, deg(w) = (1,1, . . . ,1), Des(w) = J}| .

In other words, the stationary probability of J is the proportion of permutations with de-

scent composition J.

This also follows from the stationary distribution of riffle-shuffling being the uniform

distribution.
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6.2.7 A full Basis of Left Eigenfunctions

The definition of the full basis of left eigenfunctions involve an obscure basis of QSym,

which [MR95, Cor. 2.2, Eq. 2.12] defines as the following sum of monomial quasisym-

metric functions:

PI := ∑
J≤I

(
l(I1)! . . . l(Il(J))!

)−1 MJ

Here the sum runs over all compositions J coarser than I, and
(
I1, . . . , Il(J)

)
is the decom-

position of I relative to J. (This may be related to the basis of [Haz10].) Also recall that e

is the Eulerian idempotent map

e(x) =
degx

∑
r=1

(−1)r−1

r
m[r]

∆̄
[r](x).

Theorem 6.2.14. Given a composition I with Lyndon factorisation I = I(1) . . . I(k), define

the function

gI(J) := coefficient of FJ in e
(

PI(1)

)
. . .e

(
PI(k)

)
.

Then {gI| |I|= n, I has k Lyndon factors} is a basis of left ak−n-eigenfunctions for the ath

Hopf-power Markov chain on compositions.

Example 6.2.15. Take I = (1,2,1), J = (3,1). Then I(1) = (1,2), I(2) = (1), so gI has

eigenvalue a−2, and is described by e(P(1,2))e(P(1)). Now

e(P(1,2)) = e
(

1
1!1!

M(1,2)+
1
2!

M(3)

)
=

(
M(1,2)−

1
2

M(1)M(2)

)
+

1
2

M(3)

=
1
2
(M(1,2)−M(2,1)),

and

e(P(1)) = e(M(1)) = M(1).



CHAPTER 6. CHAINS ON COFREE COMMUTATIVE ALGEBRAS 158

So

e(P1,2)e(P1) =
1
2
(M(1,2)−M(2,1))M(1)

=
1
2
(2M(1,1,2)−2M(2,1,1)+M(1,3)−M(3,1))

=
1
2
(F(1,1,2)−F(2,1,1)+F(1,3)−F(3,1)).

Hence g(1,2,1)((3,1)) = −1
2 . The full left eigenbasis for n = 4 is documented in Section

6.2.9.

Proof of Theorem 6.2.14, the full left eigenbasis. By Proposition 3.2.1.L and Theorem

2.5.1.A′, it suffices to show that there is a (non-graded) algebra isomorphism S → QSym

sending the word (i1 . . . il) to P(i1,...,il). This is the content of [MR95, Cor. 2.2]. The main

idea of the proof goes as follows: the scaled power sum of the second kind { 1
i1...il

ΦI}
(which they call {P∗I }) form a free basis for Sym, and 1

i Φ(i) is primitive, so
1

i1...il
ΦI → (i1 . . . il) is a Hopf-isomorphism from Sym to the free associative algebra.

Dualising this map gives a Hopf-isomorphism S → QSym. [MR95, Cor. 2.2] gives a

generating function proof that the image of (i1 . . . il) under this map is indeed P(i1,...,il) as

defined in the theorem.

Proof of Theorem 6.2.10, left eigenfunctions corresponding to partitions. If I is a parti-

tion, then its Lyndon factors are all singletons, so

gI(J) = coefficient of FJ in e
(
P(i1)

)
. . .e

(
P(il)
)
.

By definition, P(ir) = M(ir) and this is primitive, so ∆̄[a]M(ir) = 0 for all a ≥ 2, and

e(M(ir)) = M(ir). So gI(J) is the coefficient of FJ in M(i1) . . .M(il(I)) = pI , the power sum

symmetric function. As pI is a symmetric function (as opposed to simply quasisymmetric),

[Ges84, Th. 3] determines its coefficient of FJ to be the inner product 〈pI,sJ〉, with sJ the

skew-Schur function associated to the ribbon shape J. By the Murnaghan-Nakayama rule,

〈pI,sJ〉= χJ(I).
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6.2.8 Duality of Eigenfunctions

The eigenfunctions {fI} and {gI} above are “almost dual” in the same sense as the riffle-

shuffle eigenfunctions {fSw }, {gS
w } of Section 6.1, and this is enough to produce the neat

Corollary 6.2.18. As before, write 〈fI′,gI〉 for ∑J:|J|=n fI′(J)gI(J).

Theorem 6.2.16. Let I, I′ be compositions of n. Then

〈fI′,gI〉= 〈fSI′ ,g
S
I 〉.

In particular,

(i) 〈fI,gI〉= 1;

(ii) if I is a partition and I′ is any composition different from I, then 〈fI′,gI〉= 〈fI,gI′〉=
0;

(iii) in fact, 〈fI′,gI〉 = 0 unless there is a permutation σ ∈ Sk(I) such that λ (I′(σ(r))) =

λ (I(r)) for each r, and each I(r) is equal to or lexicographically larger than I′(σ(r)).

(Here, I = I(1) . . . I(k) is the Lyndon factorisation of I, and similarly for I′.)

Proof. Theorem 6.1.10, the partial duality of riffle-shuffle eigenfunctions, shows that

〈fSw′ ,g
S
w 〉=

1
Z(w′) ∑

σ∈Sk

fSu′
σ(1)

(u1) . . . fSu′
σ(k)

(uk),

where Z(w′) is the size of the stabiliser of Sk acting on the Lyndon factors of w′, and

w = u1 · · · · · uk and w′ = u′1 · · · · · u′k are Lyndon factorisations. The same argument, with

PI(r)in place of ur and fI′
(r)

in place of fSu′r , proves

〈fI′,gI〉=
1

Z(I′) ∑
σ∈Sk

fI′
(σ1)

(PI(1)) . . . fI′
(σk)

(PI(k)).

So, for the main statement, it suffices to show fI′(PI) = fSI′ (I) for Lyndon compositions

I, I′. Recall that

fI′ =
1

i′1 . . . i
′
l(I)

∑
J′:λ (J′)=λ (I′)

fSI′ (J
′)ΦJ′.
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Now the basis {PI} was designed to be the dual basis to { 1
i1...il

ΦI}, so, when evaluating fI′

at PI , the only summand that contributes is J′ = I. So indeed fI′(PI) = fSI′ (I) .

Parts (i) and (iii) then follow from the analogous statements of Theorem 6.1.10. To

deduce Part (ii), note that the Lyndon factors of a partition I are its parts, so the condition

λ (I′(σ(r))) = λ (I(r)) reduces to λ (I′(σ(r))) = (i(r)). Hence 〈fI′,gI〉 or 〈fI,gI′〉 is nonzero only

if all Lyndon factors of I′ are singletons, which forces I′ to also be a partition. Then the

condition i′(σ(r)) = i(r) implies I′ = I.

If I, I′ are both partitions, then the interpretations of Theorems 6.2.3 and 6.2.10 translate

Part ii of the previous Theorem to:

Corollary 6.2.17. Let χJ be the character corresponding to the ribbon shape J, and Eλ (J)

be the coefficient of any permutation with descent composition J in the Garsia-Reutenauer

idempotent Eλ . Then

∑
J

χ
J(σ)Eλ (J) =

1 if σ has cycle type λ ;

0 otherwise.

There is another consequence of Theorem 6.2.16.ii that is more relevant to the riffle-

shuffle Markov chain:

Corollary 6.2.18. Let {Xm} be the Markov chain of a-handed riffle-shuffling for a deck of

n distinct cards, starting in ascending order. Then

P{Des(Xm) = J}= 1
n! ∑

σ∈Sn

am(−n+l(σ))
χ

J(σ),

where l(σ) is the number of cycles of σ .

This also follows from [Sta01, Th. 2.1]. In the present notation, his theorem reads

P{Y1 = w|Y0 = (12 . . .n)}= FDes(w−1)(t1, t2, . . .)
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where {Ym} is the biased riffle-shuffling chain: cut the deck multinomially with parameter

(t1, t2, . . .) and interleave the piles uniformly as before. The usual a-handed shuffle is the

case where t1 = t2 = · · · = ta = 1
a , ta+1 = ta+2 = · · · = 0. So, letting [g]1/a denote the

evaluation of the quasisymmetric function g at t1 = · · · = ta = 1
a , ta+1 = ta+2 = · · · = 0 as

in Section 5.1.4,

P{Des(X1) = J}=

[
∑

w∈Sn:Des(w)=J
FDes(w−1)

]
1/a

.

According to [Sta99, Th. 7.19.7], ∑w∈Sn:Des(w)=J FDes(w−1) = sJ , the skew-Schur (symmet-

ric) function of ribbon shape J. And checking on the power sums pλ shows that the linear

map of evaluating a symmetric function of degree n at t1 = · · ·= ta = 1
a , ta+1 = ta+2 = · · ·=

0 is equivalent to taking its inner product with 1
n! ∑σ∈Sn a−n+l(σ)pλ (σ), where λ (σ) is the

cycle type of σ . So

P{Des(X1) = J}= 1
n! ∑

σ∈Sn

a−n+l(σ)〈pλ (σ),sJ〉=
1
n! ∑

σ∈Sn

a−n+l(σ)
χ

J(σ).

The case m > 1 follows from the power rule, as m iterations of a-handed shuffling is equiv-

alent to one am-handed shuffle.

Below is the proof of Corollary 6.2.18 using the diagonalisation of the descent-set

chain.

Proof. Write K for the transition matrix of the descent-set chain under riffle-shuffling.

Then the left hand side is Km((n),J), which, by the change of coordinates in Proposition

1.1.4, is equal to

∑
I

am(−n+l(I))fI((n))ğI(J),

where {ğI} is the basis of left eigenfunctions dual to the right eigenbasis {fI}. By Propo-

sition 6.2.9, fI((n)) is 0 unless I is a partition, in which case fI((n)) is the proportion of

permutations in Sn with cycle type I. So

Km((n),J) = ∑
σ∈Sn

am(−n+l(σ)) 1
n!

˘gλ (σ)(J),
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where λ (σ) denotes the cycle type of σ . For a partition I, Theorem 6.2.16 asserts that

〈fI,gI〉 = 1 and 〈fI′,gI〉 = 0 for any composition I′ different from I - this means ğI = gI

when I is a partition. So

Km((n),J) = ∑
σ∈Sn

am(−n+l(σ)) 1
n!

gλ (σ)(J),

and the conclusion follows from Theorem 6.2.10 relating the left eigenfunctions to the

ribbon characters.

There is an intermediate statement, stronger than this Corollary and deducible from

Stanley’s theorem:

P{Des(Y1) = J}= ∑
w∈Sn:Des(w)=J

FDes(w−1) =
1
n! ∑

σ∈Sn

χ
J(σ)pσ .

I conjecture that this can be proved independently of Stanley’s result via an analogous

diagonalisation of the descent-set Markov chain under biased riffle-shuffling. (It is not

hard to define “biased Hopf-powers” to study deformations of the chains in this thesis, but

I will not discuss it here as eigenbasis algorithms for these chains are still in development.)

6.2.9 Transition Matrix and Eigenfunctions when n = 4

The Hopf-square Markov chain on compositions of four describes the changes in descent

set under the GSR riffle-shuffle of four distinct cards. By explicit calculation of m∆ for

the fundamental quasisymmetric functions of degree four, the transition matrix K2,4 is the
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following matrix multiplied by 1
16 :

(4) (1,3) (3,1) (2,2) (1,2,1) (2,1,1) (1,1,2) (1,1,1,1)

(4) 5 3 3 4 1 0 0 0

(1,3) 1 5 2 3 2 1 2 0

(3,1) 1 2 5 3 2 2 1 0

(2,2) 1 2 2 6 3 1 1 0

(1,2,1) 0 1 1 3 6 2 2 1

(2,1,1) 0 1 2 2 3 5 2 1

(1,1,2) 0 2 1 2 3 2 5 1

(1,1,1,1) 0 0 0 1 4 3 3 5

.

Its basis of right eigenfunctions, as determined by Theorem 6.2.7, are the columns of

the following matrix:

E(4) f(1,3) E(3,1) E(2,2) f(1,2,1) E(2,1,1) f(1,1,2) E(1,1,1,1)

(4) 1
4 0 1

3
1
8 0 1

4 0 1
24

(1,3) − 1
12

1
2

1
12 −1

8
1
2

1
12 −1 1

24

(3,1) − 1
12 −1

2
1

12 −1
8 −1

2
1
12 −1 1

24

(2,2) − 1
12 0 −1

6
1
8 0 1

12 2 1
24

(1,2,1) 1
12 0 −1

6
1
8 0 − 1

12 −2 1
24

(2,1,1) 1
12

1
2

1
12 −1

8 −1
2 − 1

12 1 1
24

(1,1,2) 1
12 −1

2
1

12 −1
8

1
2 − 1

12 1 1
24

(1,1,1,1) −1
4 0 1

3
1
8 0 −1

4 0 1
24

.
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Its basis of left eigenfunctions, as determined by Theorem 6.2.14, are the rows of the

following matrix:

(4) (1,3) (3,1) (2,2) (1,2,1) (2,1,1) (1,1,2) (1,1,1,1)

χ(4) 1 −1 −1 −1 1 1 1 −1

g(1,3) 0 1
2 −1

2 0 0 1
2 −1

2 0

χ(3,1) 1 0 0 −1 −1 0 0 1

χ(2,2) 1 −1 −1 1 1 −1 −1 1

g(1,2,1) 0 1
2 −1

2 0 0 −1
2

1
2 0

χ(2,1,1) 1 1 1 1 −1 −1 −1 −1

g(1,1,2) 0 − 1
12 − 1

12
1
6

1
6

1
12

1
12 0

χ(1,1,1,1) 1 3 3 5 5 3 3 1

.
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