
Introduction

Updated 16 October 2009: changed the intro a bit
Updated 2 April 2009: Fixed some typos
Updated 25 March 2009: I add a little about the consequences of a bijective antipode.

Here are some notes which go with my Cambridge Part III seminar talk (March 2009) on 
"Hopf Algebras and Representation Theory", repeated recently for Stanford’s graduate 
student seminar (October 2009). I wrote this while I was learning the material, and not all 
of it made into my talk, plus the content was rearranged slightly for the talk. The last 
section on duality is meant to be a rough sketch only. 

I apologise for the strange appearance of these notes - this was typed in Microsoft Word 
before I learnt to LaTeX.

I started a version of these notes which uses universal enveloping algebras of Lie algebras 
and quantum groups as examples instead of the group algebra, they’re not quite complete, 
but you can email me for the draft: amypang@stanford.edu     . Also please email me if you 
find errors, thanks.

Amy Pang, 16 October 2009

References / further reading:
M. Sweedler, Hopf Algebras - the standard text on Hopf algebras, takes a very category-
theoretic approach.
J.C. Jantzen, Lectures on Quantum Groups, Chapter 3 - develops the axioms from the 
representation theory point of view, using quantum groups as the main example.
C. Kassel, Quantum Groups - haven't read this myself, but I'm told it's similar to Jantzen.
Wikipedia, Representations of Hopf Algebras - very short, but probably closest to what I 
do here.

Official abstract:
In this talk, I will use the properties of tensor and dual representations to motivate the 
definition of a Hopf algebra. Our main examples will be the group algebra CG and the 
vector space of functions:G->C; these two algebras are dual, and I will explain what that 
means. I may mention Lie algebras in passing, but most of the talk will be accessible to 
anyone with basic knowledge of the representation theory of groups.
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A word on algebras

We work over C  here (though all definitions can be made over arbitrary rings, see 
Sweedler's book). A C -algebra A  is simultaneously a vector space over C  and a ring. 
These two structures are compatible in that, for C∈λ , Aba ∈, , )()()( babaab λλλ == . 
(We will assume that multiplication in A  is associative - strictly speaking, A  is an 
associate algebra.) As a ring, A  has a unit, denoted 1; we will often consider scalar 
multiples of 1 as a copy of C  inside A . For example, the set of n-by-n matrices is an 
algebra, its unit is the identity matrix. Observe that the multiplication in an algebra need 
not be commutative.

A representation of an algebra A  is a map )(: VEndA →  for some vector space V  which 
preserves all the structure of A  - in other words, it is an algebra homomorphism. We will 
see that a Hopf algebra is an algebra whose representations behave in very nice ways.

The simplest example of a Hopf algebra is the group algebra GC . For any group G , GC  
is the vector space whose basis are in bijection with the elements of G . We usually think 
of elements of GC  as linear combinations of elements of G . We multiply basis elements 
of GC  according to the multiplication in G , and this extends linearly to give a 
multiplication on all of GC . Under this multiplication, the ring identity of GC  is a single 
copy of the identity element of G .

Any C -linear map on GC  is completely defined by its values on G ; conversely, any 
map from G  to a C -vector space can be uniquely extended to a C -linear map on GC . 
Since multiplication in GC  is inherited from that of G , representations of GC  are in 
bijection with representations of G . When discussing representations, we often work 
with GC  because of the extra additive structure. Remember 

Comultiplication and tensor representations

Given representations V , W  of any C -algebra A , we would like to define a related 
action on WV ⊗  (all tensor products are over C ). First observe that, given )(VEndf ∈ , 

)(WEndg ∈ , we can define

WVWVgf ⊗→⊗⊗ : , gwfvwvgf ⊗=⊗⊗ ))(( (1)

(extended linearly to all of WV ⊗ ). The association gfgf ⊗→),(  is C -bilinear, so it 
induces a map )()()( WVEndWEndVEnd ⊗→⊗ . Hence, identifying A  with its images 
in )(VEnd and )(WEnd , we have a map )( WVEndAA ⊗→⊗ . So we might hope that 
a C -linear comultiplication map AAA ⊗→∆ :  will allow us to 'multiply' two arbitrary 

representations. Following Sweedler's notation, we will write )(a∆  as )2()1(∑ ⊗ aa , for 

each Aa ∈ .

Ideally, this new tensor multiplication should contain a unit - some trivial representation 
I  with IV ⊗ , VI ⊗ , V  all isomorphic as representations, for any representation V . 



For finite-dimensional V  and IV ⊗  to be isomorphic as vector spaces, the trivial 
representation must have dimension 1, ie the A -linear action on I  is given by a counit 
map CC =→ )(: EndAε , which is again C -linear. Fix a basis vector e  of I . Then, as 
vector spaces, VVIIV ≈⊗≈⊗  via the identification vveev ≅⊗≅⊗  Vv ∈∀ . For 
these to be isomorphisms of representations, we require

aaaaaaaa ==⇔=∆⊗=∆⊗ ∑∑ )2()1()1()2( )()()()()()( εειεµειµ (2)

where ι  denotes the identity map on A , and µ  is the multiplication of factors: 
abba =⊗ )(µ . (Here, we consider ε  as a map AA →: , by identifying C  with its 

embedding in A .) If A  is non-commutative, then µ  need not be an algebra 
homomorphism; however, direct computation shows that )( ειµ ⊗  and )( ιεµ ⊗  are 
homomorphisms, since C∈)(aε  commutes with all of A .

Also, we are used to multiplication being associative, so let us impose coassociativity: 
)()( 321321 VVVVVV ⊗⊗≅⊗⊗  for any representations 1V , 2V , 3V . In terms of 

comultiplication in our algebra A , this says:

∑∑ ∆⊗=⊗∆⇔∆∆⊗=∆⊗∆ )()()()()()( )2()1()2()1( aaaaaa ιι (3)

Definition A coalgebra is a C -vector space with comultiplication and counit maps 
satisfying (2) and (3). Figure 4 shows these axioms as a diagram.

Figure 4 - Diagrammatic presentation of the coalgebra axioms (2) and (3)

Observe that (2) and (3) do not involve the multiplicative structure of A  ( )( ba ⊗µ  is 
always defined if either a  or b  is a scalar); in general, coalgebras need not be algebras 
also.

Our axioms for comultiplication (2) and (3) are not sufficient to ensure that WV ⊗  is a 
representation - we need the comultiplication and multiplication to interact in a 
compatible way. Specifically, ∆  and ε  must be algebra homomorphisms, since, by 
definition, any representation of A  is given by a homomorphism. In the definition below, 



we write out these conditions explicitly. The algebra structure on AA ⊗  is that imposed 
by our AA ⊗ -action on WV ⊗  - namely, for any )(, 11 VEndba ∈ , )(, 22 WEndba ∈ ,

))(())()(( 21212121 wbvbaawvbbaa ⊗⊗=⊗⊗⊗

 )( 2211 wbavba ⊗=    (5)

     ))(( 2211 wvbaba ⊗⊗=

So we should define multiplication on AA ⊗  by

)())(( 22112121 bababbaa ⊗=⊗⊗ (6)

Definition A bialgebra is an algebra A  that is also a coalgebra, with 

11)1( ⊗=∆ ; ∑∑ ⊗=⊗⇔∆∆=∆ )2()2()1()1()2()1()()()( babaababbaab

   1)1( =ε ;  )()()( baab εεε =

In other words, a bialgebra structure allows the 'multiplication' of representations; 
technically speaking, it makes the category of A -representations into a monoid. 

Recall that we are primarily interested in GC , the group algebra, where:

ggg ⊗=∆ )( , 1)( =gε  Gg ∈∀ (7)

and we extend this linearly to all of GC  . (Note that hhgghg ⊗+⊗=+∆ )(  , which is 
not )()( hghg +⊗+ . ∆ , ε  are clearly an algebra homomorphisms. To see that (7) 
defines a valid coalgebra structure on GC , we compute, for arbitrary Gg ∈ :

ggggg ==∑ )()( )1()2( εε ; 01)()1()( )2()1( +=+=∑ xxxxx εεε   (8)

    ∑∑ ∆⊗=∆⊗=⊗⊗=⊗∆=⊗∆ )()()()( )2()1()2()1( ggggggggggg

(Since both sides of (2) and (3)  are algebra homomorphisms, it suffices to check the 
axioms on the generators.)

Observe that, Gx C∈∀ , )(x∆  is invariant under the transposition of factors: 
)()( abba ⊗→⊗ . Coalgebras with this property are cocommutative; symbolically this 

condition says ∆=∆σ , where )()( abba ⊗=⊗σ . We can define an analogous map Vσ  
on VV ⊗ , where V  is some vector space with an A -action. σ  is clearly a 
homomorphism; for the same reason, [ ][ ] )()()( 2121 bvavvvba VV ⊗=⊗⊗ σσσ  for any 

VVvv ⊗∈⊗ 21 . Cocommutativity of A  is what allows us to take symmetric and exterior 

powers of representations, since in this case A -action commutes with Vσ : 

))(())(())(( vavava VVV σσσσ ∆=∆=∆  VVvAa ⊗∈∈∀ ,  (9)

In general, the subspace of  VV ⊗  invariant under Vσ  may not be preserved by the A -
action.



Antipode and dual representations

Given an A -action on some vector space V , we would like A  to act on *V , the set of 
C -linear maps C→V . The simplest way to achieve this is via a C -linear antipode map 

AAS →: ; for all *Vf ∈ , Vv ∈ , set

])([])[( vaSfvfa = (10)

ie a -action on *V  is precomposition with )(aS .

For this to be a valid action, we require

)()()(,1)1(*))(())((,)(1 aSbSabSSVffbafabff ==⇔∈∀== (11)

so S  is not an algebra homomorphism. In fact, maps with the above property are often 
called antimorphisms.

The natural vector space map C→⊗VV *  given by evaluation: )(vfvf →⊗  suggests 
that A  should act on VV ⊗*  trivially:

∑∑∑ =≈⊗=⊗ ])([][)( )2()1()2()1()2()1( vaaSfvafavafavfa (12)

So we require:

ειµε =∆⊗⇔=∑ )()()( )2()1( SaaaS (13)

(Again we view ε  as a map AA →: .) For symmetry, we also impose 

ειµε =∆⊗⇔=∑ )()()( )2()1( SaaSa (14)

but this does not in general make C→⊗ *VV  (again through evaluation) into an A -
homomorphism: 

∑∑∑∑ ≠=≈⊗=⊗ ])([])([][)( )2()1()1()2()1()2()2()1( vaSafvaaSfvafafavafva    (15)

unless A  is commutative. One more warning is in order here: )( S⊗ιµ , )( ιµ ⊗S  are not 
algebra homomorphisms, but, if (13) and (14) holds for  Aba ∈, , then it holds for ab  
also, because

)()()()()()()( )1()1()2()2()1()1()2()2()1()2( babaaSbSbaaSbSababS
b aa bab

εε=




== ∑ ∑∑∑∑  

(16)

and similarly for (14). Hence it suffices to check that (13) and (14) hold for the 
generators of A .

Definition A Hopf algebra is a bialgebra with C -linear antipode map AAS →:  
satifying ειµιµ =∆⊗=∆⊗ )()( SS .



Aagin, we can illustrate this as a diagram, as in Figure 17. We have omitted the 
antimorphism axiom (11) as it is possible to derive it from the other axioms (13) and 
(14); see Proposition 4.0.1 in Sweedler's book. However, we will not rely on this result in 
this talk, instead treating antimorphism as a separate condition. 

Figure 17 - Diagrammatic presentation of the Hopf algebra axiom (13) and (14)

The antipode on GC  is defined by 1)( −= ggS Gg ∈∀ . Since 111)( −−− = ghgh , this 
indeed defines an antimorphism. We check (13) and (14):

)()()( 1
)2()1( gggggSggS ε=== −∑    (18)

  )()()( 1
)2()1( gggggSgSg ε=== −∑

Here, 2S  is the identity map - this is true for commutative and cocommutative Hopf 
algebras (as proved in ?? of Sweedler's book), but need not hold in general. Hopf algebras 
with this property are called involutive.

Some authors require the antipode to be bijective (which is obviously the case for an 
involutive Hopf algebra like GC ). The advantage of a bijective antipode is that duals of 
irreducible representations remain irreducible: indeed, take an irreducible A -
representation V  and an A -invariant submodule ** VW ⊆ . Define 

*}0)(:{ WvvfVvU ∈∀=∈= ; from basic linear algebra, dimU =dimV -dim *W . 
Observe 

*,, WfUuAa ∈∈∈∀ 0)]()([)( 1 == − ufaSauf (19)

since *)(1 WfaS ∈−  by A -invariance of *W . Hence U  is A -invariant also; by 

irreducibility of V , }0{=U  or VU = . These correspond to ** VW =  or }0{* =W  
respectively, from the dimension count above.

Finally, we remark that, if an algebra A  admits a Hopf algebra structure, it is not usually 
unique: for example, given any Hopf algebra with comultiplication ∆ , counit ε  and 



bijective antipode S , we can define a new Hopf algebra structure with comultiplication 
∆σ  (recall that σ  is the transposition map), counit ε  and antipode 1−S . However, once 

∆ , ε  are fixed, the axioms (13), (14) specifies S  uniquely - this follows trivially if we 
use the alternative definition of S  found in Sweedler's book.

Dualising a Hopf algebra

Most textbooks on Hopf algebras introduces the coalgebra axioms by dualising the 
axioms for algebras (draw the axiom diagrams and reverse all the arrows). Indeed, 
dualising a finite-dimensional algebra always gives a coalgebra, and dualising any 
coalgebra creates an algebra (finite dimensionality is required in the first case so we can 
identify ** AA ⊗  with *)( AA ⊗ ). Hence dualising a finite dimensional vector space 
with both these structures produces another such object - indeed, it is another Hopf 
algebra because the axioms are "self dual" ie the diagrams are "symmetric" in some 
sense. Let us see how this works in the example of the dual vector space *GC  (for a 
finite group G ). (We will denote the maps for *GC  by *µ , *ε  etc to distinguish them 
from the maps for GC .) Recall that C -linear maps on GC  are in bijection with maps 

C→G: , so we can think of *GC  as the space of maps C→G:  with pointwise addition 
and multiplication. 

Observe that this pointwise multiplication map *µ  on *GC  is induced from the 
comultiplication map of GC  in the following way: ∆⊗=⊗ )()(* ϕφϕφµ , with the two 
factors on the right hand side combined using multiplication in C  ( *, GC∈ϕφ ). Inspired 
by this, we define φµφ =∆ * . Viewing ** GG CC ⊗  as bilinear maps on GC  , or maps 
on GG ×  (again identifying the two image spaces, CC ⊗  and C , via multiplication of 
factors in the first) this says )(),( ghhg φφ =∆ . Note that cocommutativity of GC  has 
appeared as commutativity of *GC ; similarly, associativity of GC  (

µµιµιµ ⊗⊗=⊗⊗ )()( ) ensures that *GC  is coassociative:

φιµιφµµιφµιφµφµιφι *)*(*)]([*)()(]*)[*(**)*( ∆⊗∆=⊗∆=⊗=⊗=∆⊗=∆∆⊗  
(20)

where we have used φιφι =* .

The natural choice for *ε  is "evaluation at the identity" (maps from dual spaces to C  are 
usually given by evaluation, and 1 is the only distinguished non-zero element of GC ). 
Identifying C  with its copy in GC , this says φεφε =* , so

φειφµειφφειφειµ =∆⊗=∆⊗∆=∆∆⊗=∆⊗ )()](*[]**)[(**)(* (21)

using axiom (2) on GC  for the last inequality. Explicitly for our example:

)()1()1](*[)](**)[()(**)(* gggggg φφµφφειφειµ =⊗=⊗∆=⊗∆⊗=∆⊗ (22)

and φφιεµ =∆⊗ )(*)*(*  can be checked similarly. Observe that this duality between 
counit and identity maps also runs "the other way": ε  in GC  is the constant function 1, 
the identity element of *GC .



What we have defined is a valid bialgebra structure on *GC :

),)(*)(*()()()(),)((* hgghghghhg ϕφϕφφϕφϕ ∆∆===∆    (23)

  )*)(*()1()1()1()(* ϕεφεϕφφϕφϕε ===

The case for general A  is trickier to check (it involves writing the bialgebra axioms in 
terms of our multiplication map µ ), so we omit it here.

Finally, we define the new antipode by SS φφ =)(*  - in our example of *GC , 

)())(*( 1−= ggS φφ . We check that 

φεφειφµιφφιφιµ *)()](*[]**)[(**)(* ==∆⊗=∆⊗∆=∆∆⊗=∆⊗ SSSS (24)

Some last thoughts

Instead of G , we could've performed all this analysis with a Lie algebra g . The role of 
GC  is then occupied by the universal enveloping algebra )(gU , and dualisation gives a 

Hopf algebra structure to the set of algebraic functions on the corresponding Lie group.


