
A Quick Introduction to Combinatorial Hopf algebras

C.Y. Amy Pang

(The exposition below is adapted from [Pan14, Sec. 4.1]. I’m keen to keep this correct and
reader-friendly; please let me know if anything is unclear.)

A graded, connected Hopf algebra is a graded vector space H =
⊕∞

n=0Hn equipped with two
linear maps: a product m : Hi ⊗ Hj → Hi+j and a coproduct ∆ : Hn →

⊕n
j=0Hj ⊗ Hn−j . The

product is associative and has a unit which spans H0. The corresponding requirements on the
coproduct are coassociativity : (∆ ⊗ ι)∆ = (ι ⊗ ∆)∆ (where ι denotes the identity map) and the
counit axiom: ∆(x)−1⊗x−x⊗1 ∈

⊕n−1
j=1 Hj⊗Hn−j , for x ∈ Hn. The product and coproduct satisfiy

the compatibility axiom ∆(wz) = ∆(w)∆(z), where multiplication on H ⊗ H is componentwise.
This condition may be more transparent in Sweedler notation: writing

∑
(x) x(1) ⊗ x(2) for ∆(x),

the axiom reads ∆(wz) =
∑

(w),(z)w(1)z(1) ⊗ w(2)z(2). Below, there will be no more instances of
Sweedler notation.

The definition of a general Hopf algebra, without the grading and connectedness assumptions, is
slightly more complicated (it involves an extra antipode map, which is automatic in the graded case);
the reader may consult [Swe69]. However, that reference (like many other introductions to Hopf
algebras) concentrates on finite-dimensional Hopf algebras, which are useful in representation theory
as generalisations of group algebras. These behave very differently from the infinite-dimensional
Hopf algebras that one uses in combinatorics.

In a combinatorial Hopf algebra, the product and coproduct encode respectively how to combine
and split combinatorial objects. A motivating example is:

Example 1 (Shuffle algebra). The shuffle algebra S(N), as defined in [Ree58], has as its basis the
set of all words in the letters {1, 2, . . . , N}. The number of letters N is usually unimportant, so we
write this algebra simply as S. These words are notated in parantheses to distinguish them from
integers.

The product of two words is the sum of all their interleavings, with multiplicity. For example,

m((13)⊗ (52)) = (13)(52) = (1352) + (1532) + (1523) + (5132) + (5123) + (5213),

(12)(231) = 2(12231) + (12321) + (12312) + (21231) + (21321) + (21312) + (23121) + 2(23112).

[Reu93, Sec. 1.5] shows that deconcatenation is a compatible coproduct. For example,

∆((316)) = ∅ ⊗ (316) + (3)⊗ (16) + (31)⊗ (6) + (316)⊗ ∅.

(Here, ∅ denotes the empty word, which is the unit of S.)

The idea of using Hopf algebras to study combinatorial structures was originally due to Joni
and Rota [JR79]. The concept enjoyed increased popularity in the late 1990s, when [Kre98] linked a
combinatorial Hopf algebra on trees to renormalisation in theoretical physics. Today, an abundance
of combinatorial Hopf algebras exists; see the introduction of [Foi12] for a list of references to many
examples. An instructive and entertaining overview of the basics and the history of the subject is
in [Zab10]. [LR10] gives structure theorems for these algebras.
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A particular triumph of this algebrisation of combinatorics is [ABS06, Th. 4.1], which claims
that QSym, the algebra of quasisymmetric functions (Example 5 below) is the terminal object in the
category of combinatorial Hopf algebras with a multiplicative linear functional called a character.
Their explicit map from any such algebra to QSym unifies many ways of assigning polynomial
invariants to combinatorial objects, such as the chromatic polynomial of graphs and Ehrenboug’s
quasisymmetric function of a ranked poset.

There is no universal definition of a combinatorial Hopf algebra in the literature; each author
considers Hopf algebras with slightly different axioms. What they do agree on is that such an algebra
H should have a distinguished basis B indexed by “combinatorial objects”, such as permutations,
set partitions, or trees, and it should be graded by the “size” of these objects: H =

⊕
nHn. The

Hopf algebra is connected (dim(H0) = 1) since the empty object is the only object of size 0. Many
families of combinatorial objects have a single member of size 1, so H1 is often also one-dimensional.

For x, y, z, w ∈ B, define structure constants ξywz, ηwzx by

m(w ⊗ z) = wz =
∑
y∈B

ξywzy, ∆[a](x) =
∑
wz∈B

ηwzx w ⊗ z.

In a combinatorial Hopf algebra, ξywz and ηwzx should have interpretations respectively as the (pos-
sibly weighted) number of ways to combine w, z and obtain y, and the (possibly weighted) num-
ber of ways to break x into w, z. Then, the compatibility axiom ∆(wz) = ∆(w)∆(z) translates
roughly into the following: suppose y is one possible outcome when combining w and z; then every
way of breaking y comes (bijectively) from a way of breaking w and z separately. The axioms

deg(wz) = deg(w) + deg(z) and ∆(x) ∈
⊕deg(x)

i=0 Hi ⊗Hdeg(x)−i simply say that the “total size” of
an object is conserved under breaking and combining.

These are the minimal conditions for a combinatorial Hopf algebra. A common additional
hypothesis is the existence of an internal product Hn ⊗ Hn → Hn, and perhaps also an inter-
nal coproduct. Note that commutativity of a combinatorial Hopf algebra indicates a symmetric
assembling rule, and a symmetric breaking rule induces a cocommutative Hopf algebra.

The rest of this document is a whistle-stop tour of three sources of combinatorial Hopf algebras.
A fourth important source is operads [Hol04], but that theory is too technical to cover in detail
here.

1 Species-with-Restrictions

The theory of species originated in [Joy81], as an abstraction of common manipulations of gen-
erating functions. Loosely speaking, a species is a type of combinatorial structure which one can
build on sets of “vertices”. Important examples include (labelled) graphs, trees and permutations.
The formal definition of a species is as a functor from the category of sets with bijections to the
same category. In this categorical language, the species of graphs maps a set V to the set of all
graphs whose vertices are indexed by V . There are operations on species which correspond to the
multiplication, composition and differentiation of their associated generating functions; these are
not so revelant to the present Hopf algebra construction, so the reader is referred to [BLL98] for
further details.

Schmitt [Sch93] first makes the connection between species and Hopf algebras. He defines a
species-with-restrictions, or R-species, to be a functor from sets with coinjections to the category of
functions. (A coinjection is a partially-defined function whose restriction to where it’s defined is a
bijection; an example is f : {1, 2, 3, 4} → {7, 8} with f(1) = 8, f(3) = 7 and f(2), f(4) undefined.)
Intuitively, these are combinatorial structures with a notion of restriction to a subset of their vertex
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Figure 1.1: An example coproduct calculation in Ḡ, the Hopf algebra of graphs

set; for example, one can restrict a graph to a subset of its vertices by considering only the edges
connected to this subset (usually known as the induced subgraph). Schmitt fashions from each such
species a Hopf algebra which is both commutative and cocommutative; Example 2 below explains
his construction via the species of graphs.

Example 2 (The Hopf algebra of graphs). [Sch94, Sec. 12; Fis10, Sec. 3.2] Let Ḡ be the vector
space with basis the set of simple graphs (no loops or multiple edges). The vertices of such graphs
are unlabelled, so these may be considered the isomorphism classes of graphs. Define the degree
of a graph to be its number of vertices. The product of two graphs is their disjoint union, and the
coproduct is

∆(G) =
∑

GS ⊗GSC

where the sum is over all subsets S of vertices of G, and GS , GSC denote the subgraphs that G
induces on the vertex set S and its complement. As an example, Figure 1.1 calculates the coproduct
of P3, the path of length 3. Writing P2 for the path of length 2, and • for the unique graph on one
vertex, this calculation shows that

∆(P3) = P3 ⊗ 1 + 2P2 ⊗ •+ •2 ⊗ •+ 2 • ⊗P2 + • ⊗ •2 + 1⊗ P3.

As mentioned above, this Hopf algebra, and analogous constructions from other species-with-
restrictions, are both commutative and cocommutative.

Recently, Aguiar and Mahajan [AM10] extended vastly this construction to the concept of a Hopf
monoid in species, which is a finer structure than a Hopf algebra. Their Chapter 15 gives two major
pathways from a species to a Hopf algebra: the Bosonic Fock functor, which is essentially Schmitt’s
original idea, and the Full Fock functor. In addition there are decorated and coloured variants of
these two constructions, which allow the input of parameters. Many popular combinatorial Hopf
algebras, including all examples in this thesis, arise from Hopf monoids; perhaps this is an indication
that the Hopf monoid is the “correct” setting to work in.

2 Representation rings of Towers of Algebras

The ideas of this construction date back to Zelevinsky [Zel81, Sec. 6], which the lecture notes
[GR14, Sec. 4] retell in modern notation. The archetype is as follows:

Example 3 (Representations of symmetric groups). Let Bn be the irreducible representations of
the symmetric group Sn, so Hn is the vector space spanned by all representations of Sn. The
product of representations w, z of Sn, Sm respectively is defined using induction:

m(w ⊗ z) = Ind
Sn+m
Sn×Sm w × z,

3



and the coproduct of x, a representation of Sn, is the sum of its restrictions:

∆(x) =
n⊕
i=0

ResSnSi×Sn−i x.

Mackey theory ensures these operations satisfy ∆(wz) = ∆(w)∆(z). This Hopf algebra is both
commutative and cocommutative, as Sn×Sm and Sm×Sn are conjugate in Sn+m; however, the
general construction need not have either symmetry.

It’s natural to attempt this construction with, instead of {Sn}, any series of algebras {An} where
an injection An⊗Am ⊆ An+m allows this outer product of its modules. For the result to be a Hopf
algebra, one needs some additional hypotheses on the algebras {An}; this leads to the definition
of a tower of algebras in [BL09]. In general, two Hopf algebras can be built this way: one using
the finitely-generated modules of each An, and one from the finitely-generated projective modules
of each An. (For the above example of symmetric groups, these coincide, as all representations are
semisimple.) These are dual as graded Hopf algebras. For example, [KT97, Sec. 5] takes An to be
the 0-Hecke algebra, then the Hopf algebra of finitely-generated modules is QSym, the Hopf algebra
of quasisymmetric functions. Example 5 below will present QSym in a different guise that does
not require knowledge of Hecke algebras. The Hopf algebra of finitely-generated projective modules
of the 0-Hecke algebras is Sym, the algebra of noncommutative symmetric functions of [Gel+95].
Further developments regarding Hopf structures from representations of towers of algebras are in
[BLL12].

Interestingly, it is sometimes possible to tell a similar story with the basis Bn being a set of
reducible representations, possibly with slight tweaks to the definitions of product and coproduct.
In [Agu+12; BV13; ABT13; And14], Bn is a supercharacter theory of various matrix groups over
finite fields. This means that the matrix group can be partitioned into superclasses, which are each
a union of conjugacy classes, such that each supercharacter (the characters of the representations
in Bn) is constant on each superclass, and each irreducible character of the matrix group is a
consituent of exactly one supercharacter. [DI08] gives a unified method to build a supercharacter
theory on many matrix groups; this is useful as the irreducible representations of these groups are
extremely complicated.

3 Subalgebras of Power Series

The starting point for this approach is the algebra of symmetric functions, widely considered as the
first combinatorial Hopf algebra in history, and possibly the most extensively studied. Thorough
textbook introductions to its algebra structure and its various bases are [Mac95, Chap. 1] and
[Sta99, Chap. 7].

Example 4 (Symmetric functions). Work in the algebra R[[x1, x2, . . . ]] of power series in infinitely-
many commuting variables xi, graded so deg(xi) = 1 for all i. The algebra of symmetric functions Λ
is the subalgebra of power series of finite degree invariant under the action of the infinite symmetric
group S∞ permuting the variables. (These elements are often called “polynomials” due to their
finite degree, even though they contain infinitely-many monomial terms.)

An obvious basis of Λ is the sum of monomials in each S∞ orbit; these are the monomial
symmetric functions:

mλ :=
∑

(i1,...,il)

ij distinct

xλ1i1 . . . x
λl
il
.
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Here, λ is a partition of deg(mλ): λ1 + · · · + λl(λ) = deg(mλ) with λ1 ≥ · · · ≥ λl(λ). For example,
the three monomial symmetric functions of degree three are:

m(3) = x31 + x32 + . . . ;

m(2,1) = x21x2 + x21x3 + · · ·+ x22x1 + x22x3 + x22x4 + . . . ;

m(1,1,1) = x1x2x3 + x1x2x4 + · · ·+ x1x3x4 + x1x3x5 + · · ·+ x2x3x4 + . . . .

It turns out [Sta99, Th. 7.4.4, Cor. 7.6.2] that Λ is isomorphic to a polynomial ring in infinitely-
many variables: Λ = R[h(1), h(2), . . . ], where

h(n) :=
∑

i1≤···≤in

xi1 . . . xin .

(This is often denoted hn, as it is standard to write the integer n for the partition (n) of single
part.) For example,

h(2) = x21 + x1x2 + x1x3 + · · ·+ x22 + x2x3 + . . . .

So, setting hλ := h(λ1) . . . h(λl(λ)) over all partitions λ gives another basis of Λ, the complete sym-
metric functions.

Two more bases are important: the power sums are p(n) :=
∑

i x
n
i , pλ := p(λ1) . . . p(λl(λ)); and

the Schur functions {sλ} are the image of the irreducible representations under the Frobenius
characteristic isomorphism from the representation rings of the symmetric groups (Example 3) to
Λ [Sta99, Sec. 7.18]. This map is defined by sending the indicator function of an n-cycle of Sn to
the scaled power sum

p(n)
n . (I am omitting the elementary basis {eλ}, as it has similar behaviour

as {hλ}.)
The coproduct on Λ comes from the “alphabet doubling trick”. This relies on the isomorphism

between the power series algebras R[[x1, x2, . . . , y1, y2, . . . ]] and R[[x1, x2, . . . ]] ⊗ R[[y1, y2, . . . ]],
which simply rewrites the monomial xi1 . . . xikyj1 . . . yjl as xi1 . . . xik ⊗ yj1 . . . yjl . To calculate
the coproduct of a symmetric function f , first regard f as a power series in two sets of vari-
ables x1, x2, . . . , y1, y2, . . . ; then ∆(f) is the image of f(x1, x2, . . . y1,y2, . . . ) in R[[x1, x2, . . . ]] ⊗
R[[y1, y2, . . . ]] under the above isomorphism. Because f is a symmetric function, the power series
f(x1, x2, . . . , y1, y2, . . . ) is invariant under the permutation of the xis and yis separately, so ∆(f) is
in fact in Λ⊗ Λ. For example,

h(2)(x1, x2, . . . y1, y2 . . . ) = x21 + x1x2 + x1x3 + · · ·+ x1y1 + x1y2 + . . .

+ x22 + x2x3 + · · ·+ x2y1 + x2y2 + . . .

+ . . .

+ y21 + y1y2 + y1y2 + . . .

+ y22 + y2y3 + . . .

+ . . .

= h(2)(x1, x2, . . . ) + h(1)(x1, x2, . . . )h(1)(y1, y2, . . . ) + h(2)(y1, y2, . . . ),

so ∆(h(2)) = h(2) ⊗ 1 + h(1) ⊗ h(1) + 1 ⊗ h(2). In general, ∆(h(n)) =
∑n

i=0 h(i) ⊗ h(n−i), with the
convention h(0) = 1. (This is Geissenger’s original definition of the coproduct [Gei77].) Note that
∆(p(n)) = 1 ⊗ p(n) + p(n) ⊗ 1; this property is the main reason for working with the power sum
basis.
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The generalisation of Λ is easier to see if the S∞ action is rephrased in terms of a function to
a fundamental domain. Observe that each orbit of the monomials, under the action of the infinite
symmetric group permuting the variables, contains precisely one term of the form xλ11 . . . xλll for

some partition λ. Hence the set D :=
{
xλ11 . . . xλll |l, λi ∈ N, λ1 ≥ λ2 ≥ · · · ≥ λl > 0

}
is a fundamen-

tal domain for this S∞ action. Define a function f sending a monomial to the element of D in its
orbit; explicitly,

f
(
xi1j1 . . . x

il
jl

)
= x

iσ(1)
1 . . . x

iσ(l)
l ,

where σ ∈ Sl is such that iσ(1) ≥ · · · ≥ iσ(l). For example, f(x1x
2
3x4) = x21x2x3. It is clear that

the monomial symmetric function mλ, previously defined to be the sum over S∞orbits, is the sum
over preimages of f :

mλ :=
∑

f(x)=xλ

x,

where xλ is shorthand for xλ11 . . . xλll . Summing over preimages of other functions can give bases
of other Hopf algebras. Again, the product is that of power series, and the coproduct comes from
alphabet doubling. Example 5, essentially a simplified, commutative, version of [NT06, Sec. 2],
builds the algebra of quasisymmetric functions using this recipe. This algebra is originally due to
Gessel [Ges84], who defines it in terms of P -partitions.

Example 5 (Quasisymmetric functions). Start again with R[[x1, x2, . . . ]], the algebra of power
series in infinitely-many commuting variables xi. Let pack be the function sending a monomial
xi1j1 . . . x

il
jl

(assuming j1 < · · · < jl) to its packing xi11 . . . x
il
l . For example, pack(x1x

2
3x4) = x1x

2
2x3.

A monomial is packed if it is its own packing, in other words, its constituent variables are consecutive

starting from x1. Let D be the set of packed monomials, so D :=
{
xi11 . . . x

il
l |l, ij ∈ N

}
. Writing I

for the composition (i1, . . . , il) and xI for xi11 . . . x
il
l , define the monomial quasisymmetric functions

to be:
MI :=

∑
pack(x)=xI

x =
∑

j1<···<jl(I)

xi1j1 . . . x
il(I)
jl(I)

.

For example, the four monomial quasisymmetric functions of degree three are:

M(3) = x31 + x32 + . . . ;

M(2,1) = x21x2 + x21x3 + · · ·+ x22x3 + x22x4 + · · ·+ x23x4 + . . . ;

M(1,2) = x1x
2
2 + x1x

2
3 + · · ·+ x2x

2
3 + x2x

2
4 + · · ·+ x3x

2
4 + . . . ;

M(1,1,1) = x1x2x3 + x1x2x4 + · · ·+ x1x3x4 + x1x3x5 + · · ·+ x2x3x4 + . . . .

QSym, the algebra of quasisymmetric functions, is then the subalgebra of R[[x1, x2, . . . ]] spanned
by the MI .

Note that the monomial symmetric function m(2,1) is M(2,1) + M(1,2); in general, mλ =
∑
MI

over all compositions I whose parts, when ordered decreasingly, are equal to λ. Thus Λ is a
subalgebra of QSym.

The basis of QSym with representation-theoretic significance, analogous to the Schur functions
of Λ, are the fundamental quasisymmetric functions:

FI =
∑
J≥I

MJ
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where the sum runs over all compositions J refining I (i.e. I can be obtained by gluing together
some adjacent parts of J). For example,

F(2,1) = M(2,1) +M(1,1,1) =
∑

j1≤j2<j3

xj1xj2xj3 .

The fundamental quasisymmetric functions are sometimes denoted LI or QI in the literature.
They correspond to the irreducible modules of the 0-Hecke algebra [KT97, Sec. 5]. The analogue
of power sums are more complex (as they natually live in Sym, the dual Hopf algebra to QSym),
see [Gel+95, Sec. 3] for a full definition.

In the last decade, a community in Paris have dedicated themselves [DHT02; NT06; FNT11]
to recasting familiar combinatorial Hopf algebras in this manner, a process they call polynomial
realisation. They usually start with power series in noncommuting variables, so the resulting Hopf
algebra is not constrained to be commutative. The least technical exposition is probably [Thi12],
which also provides a list of examples. The simplest of these is Sym, a noncommutative analogue
of the symmetric functions, see [NPT13, Sec. 2]. For a more interesting example, take MT to be the
sum of all noncommutative monomials with Q-tableau equal to T under the Robinson-Schensted-
Knuth algorithm [Sta99, Sec. 7.11]; then their span is FSym, the Poirier-Reutenauer Hopf algebra
of tableaux [PR95]. [Hiv07, Th. 31] and [Pri13, Th. 1] give sufficient conditions on the functions
for this construction to produce a Hopf algebra. One motivation for this program is to bring to light
various bases that are free (like hλ), interact well with the coproduct (like pλ) or are connected to
representation theory (like sλ), and to carry over some of the vast amount of machinery developed
for the symmetric functions to analyse these combinatorial objects in new ways. Indeed, Joni and
Rota anticipated in their original paper [JR79] that “many an interesting combinatorial problem
can be formulated algebraically as that of transforming this basis into another basis with more
desirable properties”.
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