
CARD GAMES AND CRYSTALS

This is the extended version of a talk I gave at KIDDIE (graduate student

colloquium) in April 2011. I wish I could give this version, but there wasn’t

enough time, so I left out section 1 and parts of section 5. This was written mainly

to help myself plan the talk, so it might not work so well read on its own, I’ve tried

to make it feel like a talk by including lots of pictures (so it’s not printer-friendly,

sorry). Please direct corrections and suggestions to amypang@stanford.edu .

This is based on a lecture by Daniel Bump in his Lie groups course, which

tied together things I learnt from Ian Grojnowski, Akshay Venkatesh and Persi

Diaconis. Thanks also to Peter and Sam for correcting my patchy knowledge of

crystals; to Rick Sommer for lending me his Zome tools to make my 3D crystal;

to Ralph, Cary and flatmates for lending me the cards; to Megan, Simon, Char-

lotte, Jon and Ilya for listening to my practice and giving good suggestions for

improvements. If you want to know more about crystals, the textbook by Hong

and Kang is apparently pretty good.

Abstract: I’m going to show you a stupid game and some stupid pictures, and

then show you how they come together to decompose representations of GLn.

Prerequisites: It’ll certainly be useful if you’ve met some representations of

GLn, although I’m only assuming knowledge of characters and tensor products

of representations of finite groups. In particular, I’m doing this all without Lie

algebra theory (though I will mention them sometimes to help people who already

know about them).

1. RSK Algorithm

Here is a rather boring card game you can play with a deck of k cards whose

face values are {1, 2, ...n}. (Each face value can appear many times, or not at

all.) It’s also rather complicated to explain, so I’ll do an example in a bit. Start

by drawing a card from the deck, and put it in the first row. Draw another card;

if its value is higher than or equal to the first card, put it at the end of the first

row (ie on the right of the first card you put down). Otherwise, replace the first

card with the second card, and put the displaced card in the second row. Now

draw the third card. If it’s higher than all cards currently in the first row, put

it at the end of the first row; otherwise, it replaces the leftmost card on the first
1

CARD GAMES AND CRYSTALS 2

row which is higher than it. In the second scenario, we take the displaced card

and it replaces the leftmost card on the second row which is higher than it, or

goes at the end of the second row if it’s higher than all cards there. If a card

was displaced at this stage, we look to the third row... until no card is displaced

(because I finally put a card at the end of a row). Then we draw the fourth card

and repeat the process, displacing from the first row then the second row...

I’ll demonstrate with k = 7 and n = 5 (ignore the suits). The first card I turn

over is a 4, which I put in the first row.

The next card I turn over is a 1, which is lower than 4, so it replaces the 4.

There’s nothing on the second row so the 4 just goes at the start of the second

row (you can think of this as the end of an empty row).

CARD GAMES AND CRYSTALS 3

The third card I draw is a 5. It’s higher than all the cards in the first row (ie

the 1), so it goes on the end of the first row.

Next, I draw a 4. 4 > 1 so the 4 can’t replace the 1. But 4 < 5 so the 4

displaces the 5. The 5 is higher than everything in the second row, so it goes at

the end of the second row.

CARD GAMES AND CRYSTALS 4

Next, I draw a 2. Again, we check the cards on the first row one by one from the

left: the 2 can’t replace the 1, because 2 > 1, but it can replace the 4. Similarly,

the displaced (red) 4 can’t replace the (black) four on the second row, but it can

replace the 5. There’s nothing on the third row so the 5 goes in the first column

of the third row.

The next card in the deck is a 5. 5 > 1 and 5 > 2, so it can’t replace anything

on the first row, so it goes on the end of the first row.

CARD GAMES AND CRYSTALS 5

Finally, I draw a 1. It can’t replace the existing 1, only a card of strictly higher

value, so it replaces the 2 in the first row. The 2 then displaces the leftmost 4 in

the second row, which displaces the 5 below it. Note that this affected cards in

two columns; it’s not generally true that cards just move down one column.

CARD GAMES AND CRYSTALS 6

So I end up with a “left justified” grid of k squares, filled with the face values of

the cards in my deck. Observe that each row is weakly increasing and each column

is strictly increasing; such an arrangment is called a semi-standard tableaux, and

this game always produces one. The shape of the tableaux is the number of

squares in the rows, which is a partition of k. For example, in the above play we

ended up with a tableaux of shape (3, 2, 1, 1).
We can make another tableaux to keep track of how the semi-standard tableaux

was built during the game. This bookkeeping tableaux has the same shape as the

tableaux that the game produced, and it’s filled with {1, 2, ..., k} such that the

positions filled by {1, 2, ...i} indicate the shape of the game tableaux after i cards

have been drawn. In other words, as you play the game, enter i in the position

of the last card you moved before drawing the i + 1th card. (In contrast to the

game tableaux, the numbers in the bookkeeping tableaux do not move once we

CARD GAMES AND CRYSTALS 7

have entered them.) So, for the game I played above, the bookkeeping tableaux

is
1 3 6
2 4
5
7

which you’ll notice is also semi-standard. A semi-standard tableaux filled with

{1, 2, ..., k} such that each entry occurs only once is called a standard tableaux.

The game tableaux and bookkeeping tableaux together give us enough infor-

mation to reconstruct the game (ie we can play it backwards, removing the cards

one by one) and deduce the order of the cards in the deck we started with. In

fact, we can play this backwards-game with any semi-standard tableaux and stan-

dard tableaux of the same shape, and we get out a string whose numbers are the

entries in the semi-standard tableaux. We’ll write this string so that the right-

most number is the top of the deck, so the above example is 1524541. In other

words, there is a bijection between strings of length k and pairs of semi-standard

tableaux and standard tableaux of same shape a partition of k, and under this

bijection, the semi-standard tableaux and the string has the same entries.

Now for something completely different.

2. Crystals

A crystal is a combinatorial gadget that we get by “freezing” a representation

of a Lie group. (Kashiwara created them from quantum groups, via deforming

the associated universal enveloping algebra then setting the parameter q = 0 -

I don’t know how this works, I can only “use” the crystals without proof.) It

doesn’t matter if you don’t know what a Lie group is; for the whole talk, I’ll work

with GLn (C), the n-by-n invertible matrices with complex entries, for which this

theory is best-understood. And all my representations will be holomorphic and

over the complex numbers.

A (finite, seminormal) GLn crystal is a finite graph with directed edges in n− 1
colours, where each vertex b is assigned a weight wt(b) ∈ Zn. There are three

additional conditions:

(1) At most one edge of each colour can leave a vertex, and at most one edge

of each colour can enter a vertex.

CARD GAMES AND CRYSTALS 8

(2) Going along an edge of colour i reduces the weight by ϵi − ϵi+1 (so there

can’t be cycles, of any combination of colours). (ϵi denotes the ith basis

vector of Zn.)

(3) For any vertex b with weight (λ1, ..., λn), the length of the i-coloured path

from b minus the length of the i-coloured path to b is λi − λi+1.

You can check that all these hold in the crystal of the standard (3-dimensional)

representation of GL3, which looks like:

and wt (bi) = ϵi. (red is colour 1, blue is colour 2)

Why is this associated with the standard representation? Here’s how to read off

the representation-theoretic information conveyed in the crystal: each vertex b in

the crystal corresponds to a basis vector vb of the representation, and the action

of

 t1
. . .

tn

on vb is multiplication by tλ1
1 ...tλn

n . In particular, the number

of vertices is the dimension of the representation. For example, the above example

is three dimensional, and vbi = ϵi correspond to the ith standard basis vector.

(It’s not usually true that vb = wt(b), since they’re usually in vector spaces of

different dimensions.) The character of

 t1
. . .

tn

 in this representation

is ∑ tλ1
1 ...tλn

n , summing over all weights λ in the crystal. In the example above,

it’s t1 + t2 + t3. This in fact gives the characters of all elements of GLn, because

almost everything in GLn is diagonalisable and the character is continuous. As

with finite groups, the character determines a GLn representation uniquely (proof

is to bootstrap either from the Lie algebra sln or from the compact group Un),

so “freezing” a representation is injective.

The i-coloured edges represent what happens if you apply the Kashiwara map

f̃i to these basis vectors; this is like fi in the Lie algebra sln, but tweaked so a

basis vector is sent to a multiple of another of these basis vectors (as opposed to

CARD GAMES AND CRYSTALS 9

a linear combination). If there’s no i-coloured edge coming from a vertex, f̃i of

that basis vector is zero. There is a complicated formula for f̃i, but roughly, it

describes how the GL2 formed by the ith and i + 1th rows and columns of the

matrix acts (hence n − 1 colours). The upshot of this is that we can find vb by

applying f̃is repeatedly to the “source”, which is b1 in the example above.

What does it mean if there are no paths from vertex b to vertex b′? An

intuitive answer is that GLn-action cannot send vb to vb′ (because we can write

any element of GLn as a product of matrices in those GL2s). Hence the connected

components of the crystal correspond to the irreducible representations.

You should convince yourself that the trivial representation is represented by a

single vertex of weight (0, 0, 0), and the determinant representation is represented

by a single vertex of weight (1, 1, 1).

3. Tensoring Crystals

One can tensor two crystals B and C, and that’ll correspond to tensoring the

two representations. The vertex set of B ⊗ C is b ⊗ c where b is a vertex of B and

c a vertex of C, and w(b ⊗ c) = w(b) + w(c). The edges are a little complicated

and work like this: for any two strands of colour i in B and in C respectively

(including strands of length 0, ie vertices without i-coloured edges going into or

out of them), draw the following diagram on their product:

(the top and left lines are not part of the tensor product, they are the strands in

B and C and are there to help me draw the product. In this example the strands

have length 5 and 2, but you get the idea). This is called the Clebsch-Gordon

CARD GAMES AND CRYSTALS 10

rule, and it comes from the decomposition into irreducibles of a tensor product

of GL2 representations.

If we want to tensor the standard representation crystal of GL3 with itself, we

get:

(Again, the lines on the top and left are not in the product, they’re just for guid-

ance.) You see there are two connected components, which means this representa-

tion is made up of two irreducible representations - indeed these are the symmetric

and exterior square. Observe that b1 ⊗ b2 is in the symmetric square crystal, but

(1, 0, 0)⊗ (0, 1, 0) isn’t in the symmetric square representation: the tensor of two

vertices doesn’t match up to the tensor of those basis vectors. (To find out which

vector b1 ⊗ b2 does represent, we need to apply f̃1 to (1, 0, 0)⊗ (1, 0, 0). We know

b1 ⊗ b1 must match (1, 0, 0) ⊗ (1, 0, 0) since it has weight (2, 0, 0) and the only

line on which

 t1

t2

t3

 act as multiplication by t2
1 is (1, 0, 0) ⊗ (1, 0, 0).)

We can tensor this with the standard representation again; then red arrows

should come out of all three dots in the middle row, and the bottom left and

bottom right dots. The triple tensor product looks like:

CARD GAMES AND CRYSTALS 11

where the bottom layer is what was drawn on the previous board. There is

a missing vertex in front of my hand, on the top layer, it isn’t connected to

anything.

Although it’s unrelated to our talk, you might ask how to dualise a crystal.

A first guess might be to reverse all the arrows, but then you realise that the

weights don’t change correctly along arrows. To fix this, put a minus sign in

front of every weight.

4. Crystals of Tableaux

Big crystals get very hard to draw. So often what we end up doing is indexing

the vertex set by some combinatorial object, and describing where the arrows go.

Fix a shape µ (with k boxes). The semi-standard Young tableaux of shape µ

and entries in {1, 2, ...n} are vertices of a GLn crystal: the weight of a tableaux is

(number of 1s, number of 2s, ...), and f̃i either sends the tableaux to 0, or changes

one of the is into an i + 1 - which i gets changed depend on a rather complicated

CARD GAMES AND CRYSTALS 12

algorithm, that I won’t have time to describe. The confusing thing is that, some-

times even a tableaux containing plenty of is would be sent to zero. (Regardless,

the weight changes in the correct way). It turns out the crystal of shape µ is con-

nected; the “source” tableau has 1s in the first row, 2s in the second row etc, and

we can obtain any semi-standard tableau of shape µ from this one by repeatedly

changing is into i + 1s in a way allowed by the f̃is. We’ll call these the µ-irreps

of GLn.

Actually, we’ve already met two crystals of tableaux: the symmetric square and

exterior square of the standard representation happen to be crystals of tableaux,

of shape (1, 1) and (2):

5. Schur Weyl Duality

So you might guess that the k-fold tensor product of the standard representa-

tion of GLn is the direct sum of the µ irreps for all partitions µ of k. But if you

try this for k = n = 3, you’ll see that the dimension of these don’t add up to 27.

Plus there are only 3 partitions of 3, but my model had 4 connected components.

The issue is that these irreps occur with multiplicities - you might’ve noticed

that, in my model, the piece I’m holding and the piece on the bottom left are

isomorphic as graphs. In fact, they’re isomorphic as crystals (which I’ll explain

later), so they correspond to the same irrep. To find these multiplicities, we use

our card game.

The vertices of the k-fold tensor product of the standard GLn crystal have the

form bi1 ⊗ bi2 ⊗ ...⊗ bik , where i1, i2, ...ik ∈ {1, 2, ...n}. Let ϕ send such a vertex to

the two tableaux given by playing RSK with i1i2...ik (remember, ik is the top of

the deck). Look at the semi-standard tableau as a vertex in a crystal of tableau,

CARD GAMES AND CRYSTALS 13

and the standard (bookkeeping) tableau as labelling which crystal it’s in. For

example

This turns out to be an injective morphism of crystals (which means w (ϕ(b)) =
w(b) and ϕ

(˜fib
)

= f̃i (ϕ(b)), ie ϕ preserves weights and edges), and its image

is the direct sum, over all µ that are partitions of k, of Nµ copies of each µ-

irrep, where Nµ is the number of standard tableau of shape µ. (The proof is via

Pieri’s rule.) So the irreducible constituents of the k-fold tensor product of the

standard representation of GLn are the µ-irreps where µ is a partition of k, and

the multiplicity of the µ-irrep is Nµ.

(It is in fact possible to prove a stronger statement of Schur-Weyl duality using

only elementary representation theory, without crystals or RSK; see the end of

my online scanned notes on representation of GLn.)

Amy Pang, 2011

