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Abstract: Imagine you are the curator of an art gallery with the above floor plan. How
many (stationary) CCTV cameras do you need so they can see all points of the gallery,
assuming they each have a 360 degree view? Chvatal proved that [n/3] cameras are
sufficient to guard a n-sided polygonal gallery without holes. I'll reproduce Fisk's proof
of this result, using graph colourings, then discuss how to generalise it for galleries with
holes like the one shown.
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Two caveats first:

I wrote this to help me prepare for my talk, to make sure that I can explain
everything coherently; it’s not really intended to be read on its own, but since I
have it, I might as well share it. It makes much more sense if you watch me draw
the diagrams as I talk about it, and then I can point to things.

This is very different from what I usually do (namely algebra). So there may well
be mistakes, and I don’t know much more than what’s written here.

1. THE ORIGINAL ART GALLERY PROBLEM

The original version was posed by Victor Klee in 1973, actually here at Stanford. It’s
sometimes referred to as Chvatal’s Watchmen problem, though nowadays the term
watchmen sometimes refers to variants where the guards or cameras are allowed to
move. According to Wolfram, it’s appeared in NUMB3RS season 2 (2006).

Problem. What (in terms of n) is the fewest number of cameras guaranteed to
guard any simply-connected n-sided polygonal gallery?

Here, polygonal means the walls of the gallery are straight, and simply-connected
means the gallery has no holes. A set of cameras is said to guard a gallery if every
point in the gallery is within direct line of sight of a camera; that is, if each point of
the gallery can be joined to some camera with a straight line lying entirely inside
the polygon.

Chvatal gave the answer in 1975:

Theorem. |n/3| cameras are sufficient to guard any simply-connected n-sided
polygonal gallery.

(|n/3] means the integer you get by rounding down n/3) First observe that, if we
have no more information on the shape of our gallery, |n/3]| is the best we can do:
In Figure 1 (which is Chvatal’s original example), each camera sees at most one of
the 4 "top" vertices, so 4 cameras are necessary. Specifically, given a point, we can
find the area where the camera that sees that particular point must be located, and
the sets corresponding to the 4 "top" vertices are disjoint. In fact, there’s nothing
special about the number 4 here, I can make a gallery with k spikes, which will
have 3k walls and require k guards.

I’ll describe a proof by Fisk, 1978. It’s simpler, but if you really want to explore
similar problems then you should see Chvatal’s proof too (eg in O’Rourke’s book),
because sometimes that generalises while Fisk’s ideas doesn’t. (Chvatal’s proof
doesn’t use graphs).

Intuition says we should divide up the gallery into "simpler" pieces, and then make
sure each piece is guarded. The simplest polygon is a triangle, and that’s a good
start because we understand how to guard triangles: they can be guarded by a
camera at any one of its vertices. (Any convez polygon has this property. So what
we're really using is that all triangles are convex). So our line of attack will be

e triangulate the polygon (figure 2 is an example of a triangulation).
e guard each triangle in the triangulation
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Since we will guard each triangle “separately” at the end, it makes sense to split
the gallery into as few triangular pieces as possible. This we do by finding ears:

Definition. An ear of a polygon is a triangle formed by three adjacent vertices of
the polygon, that lies entirely inside the polygon.

Fig 2 has some examples and non-examples of ears. Once we know that any polygon
has an ear, we’re done, by induction on the number of sides: remove the ear, by
inductive hypothesis we can triangulate the remaining polygon, that together with
the diagonal that "cut off" the ear gives a triangulation of the original polygon. (If
you’re not familiar with proof by induction, think of it this way: draw a diagonal
that separates an ear. Do the same to the part of the polygon that isn’t an ear, ie,
find an ear within that polygon and separate that off. If you keep doing this, you’ll
separate the original polygon into triangles.) Observe that in this process we never
needed to add vertices, all we do is draw n — 3 non-intersecting diagonals, which
makes n — 3 triangles. (From now on, all triangulations are assumed to be created
from ears in this way.)

The proof that every polygon has an ear is non-constructive and quite technical, so
you can skip this part if you want, although there’s one common graph theory phe-
nomenon that’s worth discussing here. Most graph theory proofs are by induction,
so it often happens that a stronger assertion is easier to prove, because one then
has a stronger inductive hypothesis to work with. Try going through the following
argument with just the weaker one-ear assumption, and you’ll see it doesn’t work.

Lemma. FEvery polygon with at least 4 sides has two interior-disjoint ears (ie these
two ears may share a vertex, or an edge that is a diagonal of the polygon, but no
more).

Proof. The case n = 4 can be checked by hand. So take n > 5, and start by picking
a concave vertex v, that is, a vertex with an acute or obtuse angle. (If you pick
a vertex with a reflex angle, you're guaranteed to fail, But this is not the only
way you can fail, see figure 2). Look at its neighbouring vertices v; and wvy. If
this is an ear, great; the n — 1-gon that’s left when we remove the ear vivvy has
two ears, by inductive hypothesis, and since these are disjoint, one of them doesn’t
involve the line vyvs, and therefore is an ear in the original n-gon. If v;vvs isn’t an
ear, then there’s a vertex in this triangle (possibly more than one). Slide the line
vivgtowards v, and let x be the last vertex this process hits. The triangle formed
by v and the translated line must lie entirely in the polygon, so zv lies entirely
inside the polygon. So zv divides the polygon into two, each with fewer vertices:
by inductive hypothesis, they each are either triangles (hence an ear of the original
polygon), or contain two ears. In the latter case, one of these ears doesn’t contain
zv (by same argument as before), and is therefore an ear in the original n-gon. This
applies to both of the smaller polygons, creating two ears as desired. ([l

Now that we’ve triangulated the polygon, we want to 3-colour the triangulation
graph.

Definition. A (vertez) k-colouring of a graph is an assignment of one of k colours
to each vertex of a graph so that no two adjacent vertices (ie no two vertices that
are connected by an edge) have the same colour. A graph on which we can define
a k-colouring is called k- colourable.



So you can think of a k-colouring as a function from the set of vertices of the graph
to the set {1,2, ..., k} satisfying the condition that no two adjacent vertices map to
the same number. Figure 4 shows a 3-colouring Figure 2 (where R,G,B denote red,
green and blue).

Lemma. Any triangulation graph (of a simply-connected polygon, created from
ears) is 3-colourable.

I'll give two proofs which are essentially the same. The first is from more of a CS
viewpoint, and requires more terminology than the second:

Definition. Given a triangulation graph, the dual graph is constructed as follows:
take a vertex for every face of the triangulation, and join two vertices if the triangles
in the triangulation that they represent share an edge.

So Figure 5 is the dual graph of Figure 4. (The numbers are for later).

Definition. A tree is a graph that is connected (there is a path between every pair
of vertices) and acyclic (has no loops).

Proof. (1) I claim that the dual graph of the triangulation is a tree. Connected-
ness is easy: given two vertices of the dual graph, they represent two triangles in
the polygon. As the polygon is connected, there’s a path in the polygon linking
these two triangles, and looking at which triangles this passes through give a path
connecting the chosen vertices of the dual graph. For example, the dotted path in
Figure 4 gives you the “bottom” part of Figure 5 as a line joining the leftmost and
rightmost vertices. The dual graph is acyclic because the polygon has no holes.

Observe that any two vertices in a tree are joined by a unique shortest path (in
fact, this is an equivalent definition for a tree). So, given a basepoint, there’s a well-
defined distance from any point to that basepoint, by counting the number of nodes
on the unique path between them. I’ve marked these distances on Figure 5, where
the left-most vertex is the basepoint. The basepoint triangle is clearly 3-colourable.
Next, colour the vertices of triangles of distance 1, then those of distance 2, and so
on. (I think CS people call this a depth first traversal?) Each triangle of distance
n shares an edge with precisely one triangle of distance n — 1, (in other words, each
distance n vertex of the dual graph is joined to precisely one distance n—1 vertex),
so the vertices on this edge (call them x,y) are already coloured, and there is one
colour left for the vertex (call it z) not on this edge. We can use this colour because
all vertices adjacent to z that aren’t z or y are in triangles of distance > n, so
they’re not coloured yet. [

If you didn’t catch all that about dual graphs and trees, here’s an alternative way
of thinking through the same argument (if you unravel the induction, you’ll see
we’re colouring the graph ear by ear, which is exactly the same as proceeding down
the dual graph.):

Proof. (2) We use induction on the number of vertices, observing that a triangle
is clearly 3-colourable. Recall that we started our triangulation by separating off
an ear. Remove this ear; by inductive hypothesis, we can 3-colour the remaining
graph. The removed vertex is connected to two vertices, which either have the same
colour, or two different colours; in either case, there’s a third colour free for it. [



This is the special case of a useful graph theory lemma: if H is a k-colourable
subgraph of G, (a subgraph is created by removing some vertices and the edges
going out from that vertex; we’re not allowed to remove an edge and keep both
endpoints,) and every vertex of G\ H is joined to < k — 1 other vertices, then G is
k-colourable.

Observe that a 3-colouring forces every triangle to have precisely one red vertex,
one green vertex and one blue vertex. So if we put a camera at every green vertex,
these cameras will cover every triangle in the triangulation. There is nothing special
about the colour green here; indeed, in Figure 4, if we had chosen red instead, then
one fewer camera will do. So we should pick the colour with the fewest vertices,
and the number of these vertices, by pigeonhole principle, is then at most |n/3].

Computationally, the first step is the most difficult; once we have the triangulation,
the dual graph allows us to colour the triangulation graph efficiently. In other words,
the first step has a non-constructive proof, but the second step is constructive.

(You might think this result means we just need to place a guard on every third
vertex: but this isn’t true. O’Rourke’s book has a nice counterexample. Also,
this result doesn’t mean the minimum number of cameras can always be achieved
by putting cameras at the vertices: again, O’Rourke demonstrates a case where 2
cameras are needed if we place them at vertices, but 1 interior camera suffices.)

2. GALLERIES WITH HOLES

It might seem bizarre to build a gallery with holes, but sometimes structural pillars
block the view of the CCTV cameras. Can you guess how to adapt our proof above
to show this result of O’Rourke (1982)?

Theorem. |(n+2h)/3] cameras suffice to guard an n-sided polygonal gallery with
h polygonal holes (where n includes the sides bordering the holes).

The idea is simple: if we build a wall from one hole to another, two holes merge
into one. We can also build a wall from a hole to the outside, in which case we
lose a hole. Either way, each wall decreases h by 1 and increases n by 2 (since both
sides of the walls becomes new sides of the gallery). So, after building h walls, we
have a holeless gallery, with 2h additional sides, and applying the previous theorem
gives the result.

The hard work is in showing that we can build these walls between the corners of
the original gallery, so no existing side becomes split into two in this construction.
Also, one needs to check that the resulting gallery is still connected, that it is one
polygon rather than two or more.

Bjorling-Sachs and Souvaine managed even better in 1991:
Theorem. |[(n+ h)/3| cameras suffice to guard an n-sided polygonal gallery with
h polygonal holes.

This is the best possible; there are examples where no fewer number will do.



3. A LOWER BOUND FOR THIS EXAMPLE

Our starting example had 12 sides and 1 hole, so we know 4 cameras are definitely
enough. We finish by showing that no fewer will do.

Remember how we proved that the k-spiked gallery needs k cameras: we found k
points which must be guarded by different cameras. But there is no obvious choice
of 4 points here whose corresponding “camera sets” are disjoint. So we’ll have to
do something a bit cleverer.

Start by observing that no camera can see both the points marked a and b on
Figure 6. So write A for the camera that sees a, and B for the camera guarding b.
A cannot see ¢ nor co, and B cannot see them both: in fact, no camera can see
both ¢; and ¢ as they’re on parallel sides of the hole.

First, suppose B sees c1, and let C' be the camera watching co. Then none of A, B
or C' can see ds, so a fourth camera is needed. In the case where B sees ¢y and C
sees ¢, none of A, B or C' can see di, so we come to the same conclusion.

(GENERALISATIONS

They are collectively known as visibility problems. Some examples:

Orthogonal galleries (galleries whose sides are “vertical” and “horizontal”) need only
[n/4] guards.

What if we require every point to be guarded by at least 2 cameras?

Higher dimensions: In 3D, we can’t always triangulate a polygon without adding
new vertices: see Schonhardt polyhedron. And there can be points of the interior
that are not visible from any vertex. (Both constructions are given in chapter 10
of O’Rourke’s book). So much more complicated machinery is needed.

Number of lights required to illuminate every point of a room where all the walls
are mirrors, under various restrictions.

Efficient algorithms for determining where to place cameras, in the various scenar-
ios.
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