A Hopf-power Markov chain on compositions: descent sets under riffle-shuffling

Hopf-power Markov chains

(generalisation of P. Diaconis, C. Y. A. Pang, and A. Ram. Hopf algebras and Markov chains: two examples and a theory, to appear in J. Alg. Combi..) What: A Markov chain modelling breaking-and-recombining of combinatorial objects.
Why: Can use Hopf-algebra structure theory (Eulerian idempotent, Poincare-Birkhoff-Witt) to diagonalise matrix of transition probabilities and get convergence rate.
How: A combinatorial Hopf algebra has basis $\amalg \mathcal{B}_{n}$ indexed by combinatorial objects, graded by "size".
The a th Hopf-power map $\Psi^{a}:=m^{[a]} \Delta^{[a]}$ represents breaking into a parts and recombining.
For $x, y \in \mathcal{B}_{n}$, set
$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $a^{-n} \Psi^{a}(x)$.
(In most cases, \mathcal{B} can be reweighted so that these coefficients sum to 1.)
\mathcal{S} : the shuffle algebra

- $\mathcal{B}_{n}=$ words of length n;
- product $=$ sum of all interleavings:
$m(13 \otimes 52)=1352+1532+1523+5132+5123+5213 ;$
- coproduct $=$ sum of all deconcatentations: $\Delta(316)=\emptyset \otimes 316+3 \otimes 16+31 \otimes 6+316 \otimes \emptyset$.

Associated Hopf-power Markov chain is a-shuffle of Bayer-Diaconis:

- cut the deck into a piles symmetrically;
- drop cards one-by-one from the piles with probability proportional to pile size.

QSym : the algebra of quasisymmetric functions

Subalgebra of $\mathbb{R}\left[x_{1}, x_{2}, \ldots\right]$ spanned by monomial quasisymmetric functions: for I a composition,

$$
M_{I}=\sum_{j_{1}<\cdots<j_{l(l)}} x_{j_{1}}^{i_{1}} \ldots x_{j_{l(l)}}^{i_{l(I)}} .
$$

- product = product as polynomials;
- coproduct $=$ sum of all deconcatentations:
$\Delta\left(M_{I}\right)=\sum_{j=0}^{l(I)} M_{\left(i_{1}, i_{2}, \ldots, i_{j}\right)} \otimes M_{\left(i_{j+1}, \ldots, i_{l(I)}\right)}$.
- Here, take $\mathcal{B}=\left\{F_{I}\right\}$, the fundamental quasisymmetric functions:

$$
F_{I}=\sum_{J \geq I} M_{J}
$$

where the sum runs over all compositions J refining I.

Descent set under riffle-shuffling
The descent composition $D C(w)$ is the lengths of the rising sequences in the word $w: D C(4261)=(1,2,1)$.

Theorem: There is a morphism of Hopf algebras $\theta: \mathcal{S} \rightarrow Q S y m$ such that, if w is a word with distinct letters, then $\theta(w)=F_{D C(w)}$.
Proof: Apply the universal construction of Aguiar-Bergeron-Sottile to the character $\zeta: \mathcal{S} \rightarrow \mathbb{R}$,

$$
\zeta(w)= \begin{cases}1 & \text { if } w_{1}<w_{2}<\cdots<w_{n} \\ 0 & \text { otherwise }\end{cases}
$$

Theorem: The descent set process of a deck of n distinct cards under a-shuffling is the Hopf-power Markov chain on QSym with respect to $\left\{F_{I}\right\}$.

So we can study the descent set process using Hopf-algebraic techniques.
Theorem: Eigenvalues are: $1, a^{-1}, a^{-2}, \ldots, a^{-n+1}$; multiplicity of a^{-n+k} is coefficient of $x^{n} y^{k}$ in $\Pi_{i}\left(1-y x^{i}\right)^{-d_{i}}$, where $d_{i}=$ number of Lyndon compositions I with $|I|=i$.
Using the eigenfunction formulae below:
Corollary:

$$
\left.\operatorname{Prob}(\emptyset \rightarrow J \text { in } m \text { steps })=\frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_{n}} a^{m(-n+\#} \operatorname{cycles}(\sigma)\right) \chi^{J}(\sigma) .
$$

Left eigenfunctions g_{λ}

Theorem: $g_{\lambda}(J)=\chi^{J}(\lambda)=$ ribbon character with skew-shape J evaluated at cycle type λ. Eigenvalue $=a^{-n+l(\lambda)}$.
Example: Fillings of skew-shape of $J=(3,5,2,1)$ with $\lambda=(4,4,3)$ is

$$
\begin{aligned}
& g_{(4,4,3)}((3,5,2,1))=(-1)^{(0+2+0)}=1 .
\end{aligned}
$$

Corollary: Stationary distribution $=g_{(1,1, \ldots, 1)}(J)$
$=$ proportion of permutations with descent composition J

Right eigenfunctions f_{λ}

$f(J):=\frac{1}{|J|} \frac{(-1)^{l(J)-1}}{\binom{|J|-1}{l(J)-1}}, \quad f_{\lambda}(J):=\frac{1}{l(\lambda)!} \sum_{I^{\prime} \sim \lambda} \prod_{r=1}^{l\left(I^{\prime}\right)} f\left(J_{r}^{I^{\prime}}\right)$
Theorem: $f_{\lambda}(J)=$ coefficient of any permutation with descent composition J in Garsia-Reutanauer idempotent E_{λ}. Eigenvalue $=a^{-n+l(\lambda)}$.
Example: Compositions I^{\prime} with underlying set partition $\lambda=(4,4,3)$ are $(4,4,3),(4,3,4),(3,4,4)$.
Decompositions $J_{r}^{I^{\prime}}$ of $J=(3,5,2,1)$ with respect to I^{\prime} are $(\cdots|\cdot, \cdots, \cdots| \cdot) \quad(\cdots|\cdot, \cdots, \cdot| \cdot \mid \cdot) \quad(\cdots, \cdots, \cdot|\cdot| \cdot)$.
$f_{(4,4,3)}((3,5,2,1))=\frac{1}{3!}\left(\frac{-1}{4\binom{3}{1}} \frac{1}{43\binom{2}{1}}+\frac{-1}{4\binom{3}{1}} \frac{1}{3} \frac{1}{4\binom{3}{2}}+\frac{11}{3} \frac{1}{44\binom{3}{2}}\right)=\frac{7}{5184}$
Corollary: Normalised number of descents $=f_{(2,1,1, \ldots, 1)}(J)$. So expected number of descents after shuffling l times $=\left(1-a^{-l}\right) \frac{n-1}{2}+a^{-l}(\#$ descents at start $)$.

