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Hopf-power Markov chains

(generalisation of P. Diaconis, C. Y. A. Pang, and A. Ram. Hopf algebras and Markov chains: two examples and a theory, to appear in J. Alg. Combi..)
What: A Markov chain modelling breaking-and-recombining of combinatorial objects.
Why: Can use Hopf-algebra structure theory (Eulerian idempotent, Poincare-Birkhoff-Witt) to diagonalise matrix of transition probabilities and get

convergence rate.
How: A combinatorial Hopf algebra has basis qBn indexed by combinatorial objects, graded by “size”.

The ath Hopf-power map Ψa := m[a]∆[a] represents breaking into a parts and recombining.
For x, y ∈ Bn, set

Prob(x→ y) = coefficient of y in a−nΨa(x).
(In most cases, B can be reweighted so that these coefficients sum to 1.)

S: the shuffle algebra

Bn = words of length n;
product = sum of all interleavings:
m(13⊗ 52) = 1352 + 1532 + 1523 + 5132 + 5123 + 5213;
coproduct = sum of all deconcatentations:
∆(316) = ∅ ⊗ 316 + 3⊗ 16 + 31⊗ 6 + 316⊗ ∅.

Associated Hopf-power Markov chain is a-shuffle of Bayer-Diaconis:
cut the deck into a piles symmetrically;
drop cards one-by-one from the piles with probability proportional to pile
size.

QSym : the algebra of quasisymmetric functions

Subalgebra of R[x1, x2, . . . ] spanned by monomial quasisymmetric
functions: for I a composition,

MI =
∑

j1<···<jl(I)

xi1j1 . . . x
il(I)
jl(I)
.

product = product as polynomials;
coproduct = sum of all deconcatentations:
∆(MI) = ∑l(I)

j=0M(i1,i2,...,ij) ⊗M(ij+1,...,il(I)).

Here, take B = {FI}, the fundamental quasisymmetric functions:
FI =

∑
J≥I

MJ

where the sum runs over all compositions J refining I .

Descent set under riffle-shuffling

The descent composition DC(w) is the lengths of the rising sequences in the word w: DC(4261) = (1, 2, 1).

Theorem: There is a morphism of Hopf algebras θ : S → QSym such that, if w is a word with distinct letters, then θ(w) = FDC(w).
Proof: Apply the universal construction of Aguiar-Bergeron-Sottile to the character ζ : S → R,

ζ(w) =

1 if w1 < w2 < · · · < wn,

0 otherwise.
Theorem: The descent set process of a deck of n distinct cards under a-shuffling is the Hopf-power Markov chain on QSym with

respect to {FI}.

So we can study the descent set process using Hopf-algebraic techniques.
Theorem: Eigenvalues are: 1, a−1, a−2, . . . , a−n+1; multiplicity of a−n+k is coefficient of xnyk in ∏i (1− yxi)−di, where di= number of Lyndon compositions I

with |I| = i.
Using the eigenfunction formulae below:
Corollary:

Prob(∅ → J in m steps) = 1
n!

∑
σ∈Sn

am(−n+# cycles(σ))χJ(σ).

Left eigenfunctions gλ

Theorem: gλ(J) = χJ(λ) = ribbon character with skew-shape J evaluated at
cycle type λ. Eigenvalue = a−n+l(λ).

Example: Fillings of skew-shape of J = (3, 5, 2, 1) with λ = (4, 4, 3) is

2
2 2

1 1 1 1 2
3 3 3

g(4,4,3)((3, 5, 2, 1)) = (−1)(0+2+0) = 1.
Corollary: Stationary distribution = g(1,1,...,1)(J)

= proportion of permutations with descent composition J

Right eigenfunctions fλ

f (J) := 1
|J |

(−1)l(J)−1( |J |−1
l(J)−1

) , fλ(J) := 1
l(λ)!

∑
I ′∼λ

l(I ′)∏
r=1

f
(
J I
′

r

)

Theorem: fλ(J) = coefficient of any permutation with descent composition
J in Garsia-Reutanauer idempotent Eλ. Eigenvalue = a−n+l(λ).

Example: Compositions I ′ with underlying set partition λ = (4, 4, 3) are
(4, 4, 3), (4, 3, 4), (3, 4, 4).
Decompositions J I ′r of J = (3, 5, 2, 1) with respect to I ′ are

(· · ·|·, · · ··, · · |·) (· · ·|·, · · ·, ·| · ·|·) (· · ·, · · ··, ·| · ·|·).

f(4,4,3)((3, 5, 2, 1)) = 1
3!
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Corollary: Normalised number of descents = f(2,1,1,...,1)(J). So
expected number of descents after shuffling l times
= (1− a−l)n−1

2 + a−l(# descents at start).
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