A Hopf-power Markov chain on compositions: descent sets under riffle-shuffling C. Y. Amy Pang

Hopf-power Markov chains

(generalisation of P. Diaconis, C. Y. A. Pang, and A. Ram. Hopf algebras and Markov chains: two examples and a theory, to appear in *J. Alg. Combi..*) What: A Markov chain modelling breaking-and-recombining of combinatorial objects.

Why: Can use Hopf-algebra structure theory (Eulerian idempotent, Poincare-Birkhoff-Witt) to diagonalise matrix of transition probabilities and get convergence rate.

How: A combinatorial Hopf algebra has basis $\amalg \mathcal{B}_n$ indexed by combinatorial objects, graded by "size". The *a*th Hopf-power map $\Psi^a := m^{[a]} \Delta^{[a]}$ represents breaking into *a* parts and recombining. For $x, y \in \mathcal{B}_n$, set

 $\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \operatorname{in} a^{-n} \Psi^{a}(x).$

(In most cases, \mathcal{B} can be reweighted so that these coefficients sum to 1.)

\mathcal{S} : the shuffle algebra

QSym: the algebra of quasisymmetric functions

- $\blacksquare \mathcal{B}_n = \text{words of length } n;$
- product = sum of all interleavings: $m(13 \otimes 52) = 1352 + 1532 + 1523 + 5132 + 5123 + 5213;$
- coproduct = sum of all deconcatentations: $\Delta(316) = \emptyset \otimes 316 + 3 \otimes 16 + 31 \otimes 6 + 316 \otimes \emptyset.$

Associated Hopf-power Markov chain is a-shuffle of Bayer-Diaconis:

- cut the deck into a piles symmetrically;
- drop cards one-by-one from the piles with probability proportional to pile size.

Subalgebra of $\mathbb{R}[x_1, x_2, ...]$ spanned by monomial quasisymmetric functions: for I a composition,

$$M_I = \sum_{j_1 < \dots < j_{l(I)}} x_{j_1}^{i_1} \dots x_{j_{l(I)}}^{i_{l(I)}}$$

- product = product as polynomials;
- coproduct = sum of all deconcatentations: $\Delta(M_I) = \sum_{j=0}^{l(I)} M_{(i_1, i_2, \dots, i_j)} \otimes M_{(i_{j+1}, \dots, i_{l(I)})}.$

• Here, take $\mathcal{B} = \{F_I\}$, the fundamental quasisymmetric functions:

$$F_I = \sum_{J \ge I} M_J$$

where the sum runs over all compositions J refining I.

Descent set under riffle-shuffling

The descent composition DC(w) is the lengths of the rising sequences in the word w: DC(4261) = (1, 2, 1).

Theorem: There is a morphism of Hopf algebras $\theta : S \to QSym$ such that, if w is a word with distinct letters, then $\theta(w) = F_{DC(w)}$. **Proof:** Apply the universal construction of Aguiar-Bergeron-Sottile to the character $\zeta : S \to \mathbb{R}$,

$$\zeta(w) = \begin{cases} 1 & \text{if } w_1 < w_2 < \dots < w_n, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem: The descent set process of a deck of n distinct cards under a-shuffling is the Hopf-power Markov chain on QSym with respect to $\{F_I\}$.

So we can study the descent set process using Hopf-algebraic techniques.

Theorem: Eigenvalues are: $1, a^{-1}, a^{-2}, \ldots, a^{-n+1}$; multiplicity of a^{-n+k} is coefficient of $x^n y^k$ in $\prod_i (1 - yx^i)^{-d_i}$, where d_i = number of Lyndon compositions I with |I| = i.

Using the eigenfunction formulae below:

Corollary:

$$\operatorname{Prob}(\emptyset \to J \text{ in } m \text{ steps}) = \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} a^{m(-n+\# \operatorname{cycles}(\sigma))} \chi^J(\sigma).$$

Left eigenfunctions g_{λ}

Theorem: $g_{\lambda}(J) = \chi^{J}(\lambda) =$ ribbon character with skew-shape J evaluated at

Right eigenfunctions f_{λ}

$$f(J) := \frac{1}{|J|} \frac{(-1)^{l(J)-1}}{\binom{|J|-1}{l(J)-1}}, \quad f_{\lambda}(J) := \frac{1}{l(\lambda)!} \sum_{I' \sim \lambda} \prod_{r=1}^{l(I')} f\left(J_r^{I'}\right)$$

Theorem: $f_{\lambda}(J) = \text{coefficient of any permutation with descent composition}$

cycle type λ . Eigenvalue = $a^{-n+l(\lambda)}$.

Example: Fillings of skew-shape of J = (3, 5, 2, 1) with $\lambda = (4, 4, 3)$ is

$$\begin{split} g_{(4,4,3)}((3,5,2,1)) &= (-1)^{(0+2+0)} = 1. \\ \text{Corollary: Stationary distribution} &= g_{(1,1,\dots,1)}(J) \\ &= \text{proportion of permutations with descent composition } J \end{split}$$

J in Garsia-Reutanauer idempotent E_{λ} . Eigenvalue $= a^{-n+l(\lambda)}$.

Example: Compositions I' with underlying set partition $\lambda = (4, 4, 3)$ are (4, 4, 3), (4, 3, 4), (3, 4, 4). Decompositions $J_r^{I'}$ of J = (3, 5, 2, 1) with respect to I' are

 $(\cdots | \cdot, \cdots, \cdots | \cdot)$ $(\cdots | \cdot, \cdots, \cdot | \cdot \cdot | \cdot)$ $(\cdots, \cdots, \cdot | \cdot \cdot | \cdot).$

$$f_{(4,4,3)}((3,5,2,1)) = \frac{1}{3!} \left(\frac{-1}{4\binom{3}{1}} \frac{1}{43\binom{2}{1}} + \frac{-1}{4\binom{3}{1}} \frac{1}{34\binom{3}{2}} + \frac{11}{34\binom{3}{2}} \frac{1}{4\binom{3}{2}} \right) = \frac{7}{5184}$$

Corollary: Normalised number of descents $= f_{(2,1,1,\ldots,1)}(J)$. So expected number of descents after shuffling l times $= (1 - a^{-l})\frac{n-1}{2} + a^{-l}(\# \text{ descents at start}).$

amypang@stanford.edu; http://math.stanford.edu/~amyp