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Abstract

In a recent paper, Diaconis, Ram and I constructed Markov chains using the coproduct-then-
product map of a combinatorial Hopf algebra. We presented an algorithm for diagonalising a
large class of these “Hopf-power chains”, including the Gilbert-Shannon-Reeds model of riffle-
shuffling of a deck of cards and a rock-breaking model.

A very restrictive condition from that paper is removed in my thesis, and this extended
abstract focuses on one application of the improved theory. Here, I use a new technique of
lumping Hopf-power chains to show that the Hopf-power chain on the algebra of quasisymmetric
functions is the induced chain on descent sets under riffle-shuffling. Moreover, I relate its right
and left eigenfunctions to Garsia-Reutenauer idempotents and ribbon characters respectively,
from which I recover an analogous result of Diaconis and Fulman (2012) concerning the number
of descents under riffle-shuffling.

1 Introduction

The Hopf algebra is a ubiquitous structure in mathematics - having originated in algebraic topology
to describe the cohomology of H-spaces, it generalises the group ring in representation theory,
and is equivalent to a group scheme in algebraic geometry. [JR79] first introduced Hopf algebras
to combinatorics to encode the breaking (coproduct) and assembling (product) of combinatorial
objects; since then, many examples of the combinatorial Hopf algebra have been developed, for
example in [Sch93], and the theory extended in [AM10].

It is natural to wonder what happens to a combinatorial object after many iterates of break-
ing and reassembling. [DPR12] examined this question by building a Markov chain out of the
coproduct-then-product operator on the corresponding combinatorial Hopf algebra. Their main
examples of these Hopf-power chains were inverse shuffling (from the free associative algebra, with
states indexed by its usual word basis) and rock-breaking (from the algebra of symmetric functions,
with states indexed by the elementary symmetric functions {eλ}). The advantage of reformulating
these familiar Markov chains as Hopf-power chains is to leverage from theorems concerning arbitrary
Hopf algebras. In particular, the Eulerian idempotent theory of [Pat93] and [Reu86], which holds
for any commutative or cocommutative graded Hopf algebra (over a field of characteristic zero),
allows the explicit construction of a left and right eigenbasis of the chain in two rather restrictive
circumstances: when the states of the chain form a polynomial basis, or when the underlying Hopf
algebra is cocommutative and the states form a free basis. These expressions can aid in estimating
convergence rates and probabilities of being in certain subsets of the state space - see [DPR12, Cor.
4.10, Sec. 2.1] respectively for an example and an extensive list of applications.

The thesis of [Panon] greatly relaxes the condition that the basis of states be polynomial or free,
instead requiring simply that no state of degree greater than 1 is primitive. Thus this extension can,
for instance, construct and analyse Markov chains on parking functions and binary trees via the
Hopf algebras of [HNT08], or use the bases with parameters of [LNT11] to deform familiar chains.
The example in the present paper has as its states the non-polynomial basis {FI} of fundamental
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quasisymmetric functions. The new idea of interpreting Hopf algebra morphisms as a lumping of
the corresponding Hopf-power chains shows that (Theorem 3.2) this chain on compositions is the
induced chain on descent sets under riffle-shuffling. This descent set chain was briefly studied by
[DF09, Th. 3.2], who gave an upper bound of log n for the mixing time (n is the number of cards in
the deck). Their emphasis was on the induced chain on the number of descents under riffle-shuffling,
for which they proved a mixing time of 1

2 log n .
Extending the ideas of [DPR12, Sec. 3.5] yields an explicit algorithm for a full right eigenbasis

{fI} and left eigenbasis {gI} of this descent set chain, both indexed by compositions of n, where n
is the number of cards in the deck. This paper will concentrate on the fI , gI when the parts of I
are ordered non-increasing, for which the unwieldly general formula simplifies neatly. This subset
of “partition eigenfunctions” completely determine the behaviour of the chain if the starting deck
has all cards in increasing order, and they have some surprising interpretations:

• (Theorem 4.2) fI(J) is the coefficient of any permutation with descent set J in the Garsia-
Reutenauer idempotent (of the descent algebra) corresponding to I;

• (Theorem 4.8) gI(J) is the value of the ribbon character (of the symmetric group) corre-
sponding to J on any permutation of cycle type I.

Summing these over partitions of fixed length then recovers the analogous discoveries of [DF12]
regarding the Markov chain of the number of descents under riffle-shuffling, see Corollaries 4.7 and
4.12.

We remark that the idea of using quasisymmetric functions to analyse descents under riffle-
shuffling is not new: [NT12] exploited the dual algebra Sym, of noncommutative symmetric func-
tions, to streamline the results of [DF12]; [HH09, Sec. 7] specialises their theory of walks on
quasisymmetric functions to diagonalise the induced chain of riffle-shuffling on the idescent set
{i|i+1 occurs earlier than i}. (They phrase their chain as the descent set under left-multiplication
of a certain quasisymmetric function whose right-multiplication describes riffle-shuffling; associ-
ating the permutation σ with the word σ−1(1) . . . σ−1(n) instead of σ(1) . . . σ(n) then exchanges
left and right and interprets their chain as the idescent set under shuffling. This results in a gen-
uinely different chain from the one examined in this paper, see the remark in Section 4.1. The
remark in [Zha09, Sec. 2.2] gives further details on the two conventions to notate decks of cards as
permutations; to avoid this confusion, this paper will use words instead of permutations.)

This paper is organised as follows. Section 2 collects together the notation necessary to describe
the eigenbasis. Section 3 shows that the Hopf-power chain on quasisymmetric functions is the
induced chain on descent sets under riffle-shuffling of distinct cards. Section 4 is devoted to the
eigenfunctions.

I would like to thank my advisor Persi Diaconis for introducing this line of investigation to me
and bringing to my attention several of the references. I am grateful to Sami Assaf, Nantel Berg-
eron, Dan Bump, Dave Hill, Anthony Licata, Jean-Christophe Novelli and Ravi Vakil for helpful
conversations. SAGE computer software ([S+12]), in particular the noncommutative symmetric
functions code by Jason Bandlow, Chris Berg, Franco Saliola and Nicolas M. Thi\’ery, was ex-
tremely useful, thanks to Sam Lichtenstein and Simon Rubenstein-Salzedo for tips with working
with SAGE. Thanks also to Megan Bernstein, Isabelle Camilier, Daniel Kim Murphy and Graham
White for assistance in preparing this article and the accompanying poster, and to the reviewer for
his/her detailed constructive feedback.
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2 Notation regarding compositions

A composition I is a list of positive integers
(
i1, i2, . . . , il(I)

)
. Each ij is a part of I. The sum i1 +

· · ·+ il(I) is denoted |I|, and l(I) is the number of parts in I. So |(3, 5, 2, 1)| = 11, l((3, 5, 2, 1)) = 4.
Forgetting the ordering of the parts of I gives a multiset λ(I) :=

{
i1, . . . , il(I)

}
. Clearly λ(I) = λ(I ′)

if and only if I ′ has the same parts as I, but in a different order. I is a partition if its parts are
non-increasing, that is, i1 ≥ i2 ≥ · · · ≥ il(I).

The diagram of I is a string of |I| dots with a division after the first i1 dots, another division
after the next i2 dots, etc.. The ribbon shape of I is a skew-shape (in the sense of tableaux) with i1
boxes in the bottom row, i2 boxes in the second-to-bottom row, etc., so that the rightmost square
of each row is directly below the leftmost square of the row above. Hence this skew shape contains
no 2-by-2 square. The diagram and ribbon shape of (3, 5, 2, 1) are shown below.

· · ·| · · · · · | · ·|·

Given compositions I, J with |I| = |J |, [GKL+95, Sec. 4.8] defines the decomposition of J

relative to I as the l(I)-tuple of compositions
(
JI1 , . . . , J

I
l(I)

)
such that |JIr | = ir and each l(JIr ) is

minimal such that the concatenation JI1 . . . J
I
l(I) refines J . Pictorially, the diagrams of JI1 , . . . , J

I
l(I)

are obtained by “splitting” the diagram of J at the points specified by the divisions in the diagram
of I. For example, if I = (4, 4, 3) and J = (3, 5, 2, 1), then JI1 = (3, 1), JI2 = (4), JI3 = (2, 1).

A composition I is Lyndon if the word i1 . . . il(I) is lexicographically strictly smaller than its
cyclic rearrangements. For example, (1, 1, 2, 1, 2) is Lyndon, but (2, 3, 2, 3) and (3, 5, 2, 1) are not. As
described by [Lot97, Th. 5.1.5, Prop. 5.1.6], the Lyndon factorisation I(1) . . . I(k) of I is obtained by
taking I(k) to be the lexicographically smallest tail of I, then I(k−1) is the lexicographically smallest
tail of I with I(k) removed, and so on. Hence, if I = (3, 5, 2, 1), then k(I) = 3 since the Lyndon
factors are I(1) = (3, 5), I(2) = (2), I(3) = (1). The factors I(r) are important in the general formulae
for the full eigenbasis, but this paper will only involve k(I), the number of Lyndon factors in I. If
I is a partition, then each part of I is a singleton Lyndon factor, which is why the corresponding
eigenfunctions have much simpler expressions. In this case, k(I) = l(I).

3 The Markov chain on descent sets under shuffling

The purpose of this section is to prove that the coproduct-then-product operator on the algebra
of quasisymmetric functions encodes the changes in descent set of a deck of distinct cards under
riffle-shuffling. Sections 3.1 and 3.2 review background on the shuffle algebra and the algebra of
quasisymmetric functions respectively. Section 3.3 defines the all-important Hopf morphism from
the shuffle algebra to QSym to relate the two Hopf-power chains, and explains how to lump other
Hopf-power chains by the same reasoning. This allows the ideas of [DPR12, Sec. 3.5] to give
explicit expressions for the eigenbasis, as shown in Section 4.

3.1 The Shuffle algebra and riffle-shuffling

The shuffle algebra S, as defined by [Ree58], is spanned by words of the form w = w1 . . . wn, where
each wi ∈ N. The wi need not be distinct. S is multigraded: deg(w) = (|{i : wi = 1}|, |{i : wi = 2}|, . . . ).
In other words, the kth component of deg(w) is the number of times the letter k appears in w.
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The shuffle algebra also admits a coarser grading: |w| is the number of letters in w. For example,
deg(12231) = (2, 2, 1), |12231| = 5.

The product of two words w and w′, denoted m(w⊗w′), is the sum of all possible interleavings
of their letters, with multiplicity. For example,

m(13⊗ 52) = 1352 + 1532 + 1523 + 5132 + 5123 + 5213;

m(12⊗ 231) = 2(12231) + 12321 + 12312 + 21231 + 21321 + 21312 + 2(23112) + 23121.

Iterating this gives the a-fold product:

(3.1) m[a] : S⊗a → S, m[1] := ι, m[a] := m(m[a−1] ⊗ ι),

where ι denotes the identity map. Note that m = m[2]. [Reu93, Sec. 1.5] showed that deconcate-
nation is a compatible coproduct. For example,

∆(316) = ∅ ⊗ 316 + 3⊗ 16 + 31⊗ 6 + 316⊗ ∅.

(Here, ∅ denotes the empty word, which is the unit of S.) The a-fold coproduct is given inductively
by:

(3.2) ∆[a] : S → S⊗a, ∆[1] := ι, ∆[a] := (∆[a−1] ⊗ ι)∆,

so again ∆ = ∆[2]. As an example,

∆[3](316) = ∅ ⊗ ∅ ⊗ 316 + ∅ ⊗ 3⊗ 16 + 3⊗ ∅ ⊗ 16 + ∅ ⊗ 31⊗ 6 + 3⊗ 1⊗ 6.

+31⊗ ∅ ⊗ 6 + ∅ ⊗ 316⊗ ∅+ 3⊗ 16⊗ ∅+ 31⊗ 6⊗ ∅+ 316⊗ ∅ ⊗ ∅

Letting the word w1 . . . wn represent a deck of cards in the order w1, w2, . . . , wn from top to
bottom, the Hopf-square map Ψ2 := m∆ represents a Gilbert-Shannon-Reeds shuffle: cut the deck
binomially with parameter 1

2 , then drop the cards one by one from either pile, where the chance of
dropping from a pile is proportional to the number of cards currently in the pile. Precisely,

Ψ2(w) = m∆(w) =
∑
w′

2|w|K2(w,w′)w′,

where K2(w,w′) is the chance of a GSR shuffle applied to w resulting in w′. In other words, the
matrix for the operator 2−nΨ2, with respect to the basis of words with n letters, transposes to
give the transition matrix of the GSR shuffle. Analogously, the ath Hopf-power, Ψa := m[a]∆[a],
describes the a-shuffle of [BD92], where the cards are cut into a piles multinomially (with parameter
1
a) and then dropped proportional to pile size as before.

The descent set of a word w = w1 . . . wn is defined to beD(w) = {j ∈ {1, 2, . . . , |w| − 1}|wj > wj+1}.
It is more convenient in this paper to consider the associated composition of D(w). Hence a word
w has descent composition DC(w) = I if ij is the number of letters between the j − 1th and jth
descent, i.e. if wi1+···+ij > wi1+···+ij+1 for all j, and wr ≤ wr+1 for all r 6= i1 + · · ·+ij . For example,
D(4261) = {1, 3} and DC(4261) = (1, 2, 1). Note that no information is lost in passing from D(w)
to DC(w), as the divisions in the diagram of DC(w) indicate the positions of descents in w.
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3.2 The algebra of quasisymmetric functions

The algebra QSym of quasisymmetric functions was first introduced by [Ges84] to study P -
partitions. It is a subalgebra of the algebra of polynomials in infinitely many commuting variables
{x1, x2, . . . }. Gessel defined two bases of QSym, both indexed by compositions. The monomial
quasisymmetric function MI associated to a composition I =

(
i1, . . . , il(I)

)
is

MI =
∑

j1<···<jl(I)

xi1j1 . . . x
il(I)
jl(I)

,

and the fundamental quasisymmetric function FI associated to I is

FI =
∑
J≥I

MJ

where the sum runs over all compositions J refining I. QSym inherits a grading and a commutative
product from the algebra of polynomials, so deg(MI) = deg(FI) = |I|. [MR95] extended this to a
Hopf algebra structure by defining the following coproduct:

∆(MI) =

l(I)∑
j=0

M(i1,i2,...,ij) ⊗M(ij+1,...,il(I)).

Equations (3.1) and (3.2) define an a-fold product and a-fold coproduct on QSym.

3.3 Lumping riffle-shuffling by descent set

The algebraic relationship between the two Hopf algebras above is:

Theorem 3.1. There is a morphism of Hopf algebras θ : S → QSym such that, if w is a word
with distinct letters, then θ(w) = FDC(w).

(sketch). The linear function ζ : S → R defined by

ζ(w) =

{
1 if w1 < w2 < · · · < wn

0 otherwise,

is an algebra homomorphism; now apply the universal construction of [ABS06, Th. 4.1].

As θ is a Hopf morphism, it commutes with the ath Hopf-power map Ψa. The probability
interpretation of this is:

Theorem 3.2. The descent set process of a deck of n distinct cards under a-shuffling is a Markov
chain, whose transition matrix K̄a,n is the transpose of the matrix for the rescaled Hopf-power map
a−nΨa on QSym, with respect to the basis {FI | |I| = n}.

Proof. Let Ka,n be the transition matrix for a-shuffling on a deck of n distinct cards. Then, for
any w with n distinct letters,

a−nΨa(w) =
∑
w′

Ka,n(w,w′)w′.
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Apply θ of Theorem 3.1 to both sides, remembering that θ and Ψa commute:

a−nΨa(θ(w)) =
∑
w′

Ka,n(w,w′)θ(w′).

As all words involved have distinct letters, Theorem 3.1 yields

(3.3) a−nΨa(FDC(w)) =
∑
w′

Ka,n(w,w′)FDC(w′) =
∑
J

 ∑
w′:DC(w′)=J

Ka,n(w,w′)

FJ .

The left hand side of this equation depends only on DC(w), so the same is true of the coefficients∑
w′:DC(w′)=J Ka,n(w,w′) on the right. These are the probabilities that, after an a-shuffle, a deck in

order w now has descent composition J . Hence the descent set process under shuffling is indeed a
Markov chain, and Equation 3.3 gives the transition probabilities as the (I, J)-entry of the transpose
of the matrix for a−nΨa.

Note 1. This straightforward argument applies verbatim to lump Hopf-power Markov chains on
other graded Hopf algebras. Let θ : H → H′ be a morphism of graded Hopf algebras mapping a
basis Bν of the degree ν subspace Hν of H onto a basis B′ν′ of some degree ν ′ subspace H′ν′ of H′.
(θ : Hν → H′ν′ must be surjective, but need not be injective - several elements of Bν may have the
same image in H′ν′ , as long as the distinct images are linearly independent.) Then the Hopf-power
walk on Bν lumps via θ to the Hopf-power walk on B′ν′ .

4 Explicit formulae for eigenfunctions

Section 4.1 gives the eigenvalues of the descent set chain and their multiplicities. Sections 4.2 and
4.3 detail formulae for the right and left “partition eigenfunctions” respectively, explain how to
recover the results of [DF12], and sketch the ideas behind the proofs of the full eigenbases. This
strategy also diagonalises Hopf-power chains on a large class of commutative cofree combinatorial
Hopf algebras. These eigenfunctions are useful for a variety of probabilistic tasks, as [DPR12, Sec.
2.1] explains.

4.1 Multiplicity of eigenvalues

As is the case for previously analysed Hopf-power Markov chains, all eigenvalues of this descent
set chain are powers of the Hopf-power exponent a. The full eigenbasis algorithm shows that fI
has eigenvalue ak(I)−|I|, where k(I) is the number of Lyndon factors in I. A standard generating
function argument then rephrases this as:

Theorem 4.1. The eigenvalues of the ath Hopf-power Markov chain on compositions of n are

1, a−1, a−2, . . . , a−n+1. The multiplicity of the eigenvalue a−n+k is the coefficient of xnyk in
∏
i

(
1− yxi

)−di,
where di is the number of Lyndon compositions I with |I| = i.

Note 2. The idescent set chain of [HH09, Sec. 7] has the same eigenvalues, but there each compo-
sition I corresponds to an eigenfunction of eigenvalue a−n+l(I), so the multiplicity of a−n+k in the
idescent set chain is the number of compositions of n with length k. This difference in eigenvalue
multiplicity suggests the two chains have different convergence rates.
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4.2 Right eigenfunctions

All functions fI in the right eigenbasis are essentially built from the function

f(J) :=
1

|J |
(−1)l(J)−1( |J |−1

l(J)−1

) .

Note that f(J) depends only on |J | and l(J) − 1, which are respectively the number of dots and
the number of divisions in the diagram of J .

Theorem 4.2 below gives an explicit formula for the right eigenfunctions fI corresponding to a
partition I (when I is not a partition, the sum becomes weighted), and relates them to the orthog-
onal idempotents EI of the descent algebra. These idempotents refine the more familiar Eulerian
idempotent, and were first defined by [GR89, Sec. 3] to classify indecomposable representations of
the descent algebra.

Theorem 4.2. Let I be a partition with |I| = n. With f as defined above, the function

fI(J) :=
1

l(I)!

∑
I′:λ(I′)=λ(I)

l(I′)∏
r=1

f
(
JI

′
r

)
=

1

l(I)!i1 . . . il(I)

∑
I′:λ(I′)=λ(I)

l(I′)∏
r=1

(−1)
l
(
JI′
r

)
−1( |JI′

r |−1

l(JI′
r )−1

)
is a right eigenfunction of eigenvalue a−n+l(I) of the ath Hopf-power Markov chain on compositions.
The numbers fI(J) are the coefficients in the Garsia-Reutenauer idempotent EI :

EI =
∑
σ∈Sn

fI(DC(σ))σ.

Observe that f itself is a right eigenfunction, that corresponding to the partition with single
part. Its eigenvalue is a−n+1, the smallest possible.

Example 4.3. Here’s how to apply the algorithm above to calculate f(4,4,3)((3, 5, 2, 1)). The
I ′ in the sum are the rearrangements of (4, 4, 3), which are (4, 4, 3), (4, 3, 4) and (3, 4, 4). The
decompositions of (3, 5, 2, 1) with respect to these three I ′ are:

(· · ·|·, · · ··, · · |·) (· · ·|·, · · ·, ·| · ·|·) (· · ·, · · ··, ·| · ·|·),

so

f(4,4,3)((3, 5, 2, 1)) =
1

3!

(
−1

4
(

3
1

) 1

4

−1

3
(

2
1

) +
−1

4
(

3
1

) 1

3

1

4
(

3
2

) +
1

3

1

4

1

4
(

3
2

)) =
7

5184
.

As f((1)) = 1, one may omit all r with |JI′r | = 1 from the product in the expression for fI . This
simplifies the calculation of f(i1,1,1,...,1)(J) to “pulling a window” of length i1 across the diagram of
J and summing the values of f on each position of the window.

Example 4.4. Take i1 = 2, then in the window of length 2, there is either a division or no division.
Since f((2)) = 1

2 and f((1, 1)) = −1
2 , f(2,1,1,...,1)(J) is the sum of 1

2 for every non-division and −1
2

for every division, divided by (n− 1)!, i.e.,

f(2,1,1,...,1)(J) =
1

(n− 1)!

(
|J | − 1

2
− (l(J)− 1)

)
.

By Theorem 4.1, this is the unique right eigenfunction of eigenvalue 1
a , the largest eigenvalue after

1. Its lift to the shuffle algebra is the “normalised number of descents” eigenfunction, as discussed
in [DPR12, Ex. 5.8].
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Example 4.5. When i1 = 3, calculations of f(J) for J with |J | = 3 show that

f(3,1,1,...,1)(J) =
1

3(n− 2)!

(
# (2 consecutive non-divisions) + # (2 consecutive divisions)

−1

2
#(division followed by non-division) − 1

2
#(non-division followed by division)

)
.

The associated eigenvalue is 1
a2

. Since divisions correspond to descents in the shuffle algebra, and
non-divisions to ascents, f(3,1,1,...,1) lifts to the shuffle algebra as

f̃(3,1,1,...,1)(w) =
1

3(n− 2)!

(
# straights − 1

2
# troughs − 1

2
# peaks

)
=

1

2(n− 2)!

(
# straights − n− 2

3

)
since # straights + # troughs + # peaks = n− 2. (Here, a straight is two consecutive ascents or
two consecutive descents.) This “normalised number of straights” eigenfunction is 1

2(n−2)!f− in the

notation of [DPR12, Prop.5.10]. The full eigenbasis formula shows that the normalised number of
peaks and of troughs are also eigenfunctions. Consequently:

Proposition 4.6. The expected number of straights (resp. peaks, troughs) after a-shuffling l times,
starting from a deck with x straights (resp. peaks, troughs), is

(1− a−2l)
n− 2

3
+ 4−lx.

The story is similar for larger i1: f(i1,1,1,...,1) is the weighted enumeration of “patterns” of length

i1, where pattern J has weight f(J)
(n−i1+1)! . Each of these lifts to an eigenfunction on the shuffle

algebra, that is a weighted enumeration of up-down-patterns of length i1.

Corollary 4.7. [DF12, Cor. 3.2] Let fi(j) be the coefficient of any permutation with j descents
in the ith Eulerian idempoten. Then {fi} is a right eigenbasis for the Markov chain on the number
of descents under riffle-shuffling.

Proof. The key is that the Garsia-Reutenauer idempotents for partitions of a fixed length sum to
the corresponding Eulerian idempotent:

ei =
∑
l(I)=i

EI =
∑
σ∈Sn

∑
l(I)=i

fI(DC(σ))σ.

Since the coefficient of a permutation in the Eulerian idempotent depends only on its number
of descents, the function

∑
l(I)=i fI(J) depends only on l(J), and it is a right eigenfunction of

eigenvalue a−n+i. By the eigenfunction theory of lumped chains, as in [LPW09, Lem. 12.8.i], this
descends to a right eigenfunction

j →
∑
l(I)=i

fI(J) for any J of length j

on the induced chain on the number of descents, which is the required fi.

The full right eigenbasis {fI} comes from applying [DPR12, Th. 3.16] to Sym, the graded dual
of QSym. The eigenfunctions are most naturally expressed in terms of {ΦI}, the noncommutative
power sum of the second kind; one then uses the explicit change-of-basis matrices of [GKL+95, Sec.
4] to rewrite this in terms of the dual basis to {FI}, which is {RI}, the noncommutative ribbon
symmetric functions.
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4.3 Left eigenfunctions

The left eigenfunctions gI for I a partition are most concisely defined using some representation
theory of the symmetric group Sn, although their calculation is completely combinatorial. Each
composition J may be associated to a representation of Sn via its ribbon shape J ; denote by χJ

the character of this representation.

Theorem 4.8. Let I be a partition with |I| = n. Define gI(J) := χJ(I), the character of Sn

associated to the ribbon shape J evaluated at a permutation with cycle type I. Then gI is a left
eigenfunction of the ath Hopf-power Markov chain on compositions with eigenvalue a−n+l(I).

[CSST10, Rem. 3.5.18] explains how to calculate χJ(I) graphically: find all possible ways of
filling the ribbon shape of J with i1 copies of 1, i2 copies of 2, etc., such that all copies of each integer
are in adjacent cells, and all rows and columns are weakly increasing; then sum over these fillings,
weighted by (−1)Σ(lr−1), where lr is the number of rows containing r. (For general compositions
I, the left eigenfunction gI(J) is a weighted sum over coloured fillings of the ribbon shape of J
subject to complex restrictions, and does not have a neat expression in terms of characters.)

Example 4.9. Calculating g(4,4,3)((3, 5, 2, 1)) requires filling the ribbon shape of (3, 5, 2, 1) with
four copies of 1, four copies of 2 and three copies of 3, subject to the constraints in explained above.
Observe that the top square cannot be 1, because then the top four squares must all contain 1,
and the fifth square from the top must be equal to or smaller than these. Similarly, the top square
cannot be 3, because then the top three squares are all 3s, but the fourth must be equal or larger.
Hence 2 must fill the top square, and the only legal way to complete this is

2
2 2

1 1 1 1 2
3 3 3

so
g(4,4,3)((3, 5, 2, 1)) = (−1)(0+2+0) = 1.

Example 4.10. There is only one way to fill any given ribbon shape with n copies of 1, so

g(n)(J) = (−1)l(J)−1.

Next, take I = (1, 1, . . . , 1). Then g(1,1,...,1) is χJ evaluated on the identity permutation. A
theorem of [Fou80], described in [KT84], translates this to:

Corollary 4.11. The stationary distribution for the ath Hopf-power Markov chain on compositions
is

g(1,1,...,1)(J) =
1

n!
|{w| |w| = n, deg(w) = (1, 1, . . . , 1), DC(w) = J}| .

In other words, the stationary probability of J is the proportion of words with letters are 1, 2, . . . , n
(each appearing exactly once) whose descent composition is J .

This also follows from the stationary distribution of riffle-shuffling being the uniform distribu-
tion.

Corollary 4.12. [DF12, Th. 2.1] Let gi(j) be the value of the jth Foulkes character of the sym-
metric group on any permutation with i cycles. Then {gi} is a left eigenbasis for the Markov chain
on the number of descents under riffle-shuffling.

9



Proof. Each gI determines a left eigenfunction for the number of descents chain, by summing the
values of gI over all compositions lumping to the same state, see [BT77, Th. 2] for details. So

j →
∑
l(J)=j

gI(J) =
∑
l(J)=j

χJ(I)

is an eigenfunction of eigenvalue a−n+l(I), and this sum of ribbon characters is by definition the
jth Foulkes character.

The full left eigenbasis is given by essentially applying [DPR12, Th. 3.15] to products of
{PI |I is Lyndon}, where {PI} is the power sum analogue as defined by [MR95, Eq. 2.12], as their
Corollary 2.2 states that {PI |I is Lyndon} freely generates QSym.
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ble), 43(4):1067–1087, 1993.

[Ree58] R. Ree. Lie elements and an algebra associated with shuffles. Ann. of Math. (2),
68:210–220, 1958.
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