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The Monomial basis of QSym
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∑
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indexed by compositions

The degree of a composition is the number of squares.
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M1,2M1 =
∑
i<j

x1ix
2
j

∑
k

x1k

= M1,2,1 +M1,3,1 +M1,1,2 +M2,2,1 +M1,1,2

The product (combining of compositions) in the M basis expands positively - it is
quasishuffle of blocks:

indexed by compositions

i < j < k i < j = k i < k < j i = k < j k < i < j

The degree of a composition is the number of squares.
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∆+(M1,2,1) = ∆+

 ∑
i<j<k
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The coproduct in the M basis

QSym is a Hopf algebra, i.e. it has a coproduct ∆ : QSym→ QSym⊗ QSym
(breaking of compositions), compatible with its product.

Given f(x1, x2, . . .), let f(y1, y2, . . . , z1, z2, . . .) =
∑
i gi(y1, y2, . . . )hi(z1, z2, . . . ).

Let ∆(f) =
∑
i gi ⊗ hi, and ∆+(f) = ∆(f)− 1⊗ f − f ⊗ 1.

The Monomial basis of QSym
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The Monomial basis of QSym

QSym is a Hopf algebra, i.e. it has a coproduct ∆ : QSym→ QSym⊗ QSym
(breaking of compositions), compatible with its product.

Given f(x1, x2, . . . ), let f(y1, y2, . . . , z1, z2, . . . ) =
∑
i gi(y1, y2, . . . )hi(z1, z2, . . . ).

Let ∆(f) =
∑
i gi ⊗ hi, and ∆+(f) = ∆(f)− 1⊗ f − f ⊗ 1.

The coproduct in the M basis is deconcatenate between blocks

i.e. compositions have a “unique factorisation” and the coproduct deconcatenates
the factors – i.e. this coproduct is cofree (i.e. the dual basis in the dual Hopf
algebra is free)
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The Hopf structure of QSym, in the M basis, tells us that quasishuffle of blocks is
compatible with deconcatenation between blocks.

If we study QSym using a different basis, the product and coproduct will be
described by different operations on compositions, hence we will have a different pair
of compatible operations on compositions.

Fundamental basis: Fα =
∑
β≥αMβ using the refinement order

F3,1,1 = M3,1,1 +M2,1,1 +M1,2,1 +M1,1,1,1

Other bases of QSym

M-basis of QSym

?-basis of QSym

e.g.

Fundamental basis: Fα =
∑
β≥αMβ using the refinement order

combining compositions by quasishuffle of blocks;
breaking compositions by deconcatenation between blocks.

combining compositions by ???;
breaking compositions by ???.
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F1,2F1 = F1,3,1 + F1,2,1 + F2,2,1 + F1,1,2

F1,1F2 = F1,3,1 + F2,2,1 + F1,1,2 + F3,1,1 + F1,2,1 + F2,1,1

The product in the F basis is the shuffle of squares:

The Fundamental basis of QSym
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F1,2F1 = F1,3,1 + F1,2,1 + F2,2,1 + F1,1,2

F1,1F2 = F1,3,1 + F2,2,1 + F1,1,2 + F3,1,1 + F1,2,1 + F2,1,1

The product in the F basis is the shuffle of squares:

The coproduct in the F basis is deconcatenate between squares - which produces
one term in each degree:

The Fundamental basis of QSym

∆+(F3,1) = ∆+(M3,1 +M2,1,1 +M1,2,1 +M1,1,1,1)

= M1 ⊗M2,1 +M1 ⊗M1,1,1

+ M2 ⊗M1,1 +M1,1 ⊗M1,1

+M3 ⊗M1 +M2,1 ⊗M1 +M1,2 ⊗M1 +M1,1,1 ⊗M1

= F1 ⊗ F2,1 + F2 ⊗ F1,1 + F3 ⊗ F1
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Other Hopf algebras

• Many other Hopf algebras have a F-like basis:

– The product is some shuffling of the ground set;
– The coproduct is deconcatenation of the ground set, producing one term of

each degree.

• Often , ∃ a poset on the underlying
objects, and we can define a M-like basis by Fα =

∑
β≥αMβ :

– The coproduct in the M basis is cofree, given by deconcatenation “between
factors” of a unique factorisation - this is proved ad-hoc;

– The product is ???.

on permutations,
packed words,
binary trees

Bergeron-Zabrocki,
Loday-Ronco

weak order,
Tamari order

We distill the Aguiar-Sottile approach into axioms: check that shuffling,
deconcatenation and the poset interact in these correct ways, and you are
guaranteed a M basis with positive product and cofree coproduct.

Novelli-Thibon,
Pilaud-Pons
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Axioms for coproduct

∆1. Coproduct in fundamental basis is “deconcatenate everywhere”

∆+(Ff ) =

deg f−1∑
i=1

Fif ⊗ Ffi ; deg if = i

∆+
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E.g.

Example: a new Hopf algebra PSym of parking functions,
viewed as binary trees labelled with a permutation
satisfying some conditions



C.Y. Amy Pang Monomial bases for combinatorial Hopf algebras Page 6

Axioms for coproduct

∆1. Coproduct in fundamental basis is “deconcatenate everywhere”

∆+(Ff ) =

deg f−1∑
i=1

Fif ⊗ Ffi ; deg if = i

∆+

(
5

3

4
2

1

)
= 1 ⊗ 3

4
2

1 + 2
1 ⊗ 1

3
2 + 3

1

2 ⊗ 2
1 +

4

2

3
1⊗ 1

5

3

4
2

1

5

3

4
2

1

5

3

4
2

1

5

3

4
2

1

E.g.

∆2. Deconcatenation is order-preserving: if f ≤ f ′, then if ≤ if ′ and f i ≤ f ′i.
f ≤ f ′ if their trees are comparable in Tamari order and their permutations
are comparable in weak order

Example: a new Hopf algebra PSym of parking functions,
viewed as binary trees labelled with a permutation
satisfying some conditions
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Axioms for coproduct (cont’d)

Theorem : If ∆1-3 are satisfied, and we define M basis by Ff =
∑
g≥f Mg, then

∆+(Mf ) =
∑

i∈GDes(f)

Mif ⊗Mfi . (deconcatenate “between blocks”)
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Axioms for coproduct (cont’d)

∆3. “Maximal concatenation” is well defined:
Given g, h, ∃ unique max{f |if = g, f i = h} := g/h;

e.g. / = max{ , } =

Theorem : If ∆1-3 are satisfied, and we define M basis by Ff =
∑
g≥f Mg, then

∆+(Mf ) =
∑

i∈GDes(f)

Mif ⊗Mfi . (deconcatenate “between blocks”)

1, 1 2 1, 1, 2 1, 3 1, 1, 2
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Axioms for coproduct (cont’d)

∆3. “Maximal concatenation” is well defined:
Given g, h, ∃ unique max{f |if = g, f i = h} := g/h;

e.g. / = max{ , } =

Theorem : If ∆1-3 are satisfied, and we define M basis by Ff =
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g≥f Mg, then
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Mif ⊗Mfi . (deconcatenate “between blocks”)
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E.g. in Monomial Basis:

So we can define “between blocks” to be “positions of maximal concatenation”,
also called global descents GDes(f) := {i : f = if/f i}
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Axioms for product

m1. Product in fundamental basis is a sum of shuffles ζ(f, g):

FfFg =
∑

ζ∈Sh(f,g)

Fζ(f,g)

m2. Shuffles are order-preserving: if f ≤ f ′, g ≤ g′, then ζ(f, g) ≤ ζ(f ′, g′).

m3. Shuffles are join-preserving: ζ(f1 ∨ f2, g1 ∨ g2) ≤ ζ(f1, g1) ∨ ζ(f2, g2).

Theorem : If m1-3 are satisfied, then the coefficient of Mh in MfMg is the
number of shuffles ζ satisfying
• ζ(f, g) ≤ h;
• if f ′ ≥ f, g′ ≥ g satisfy ζ(f ′, g′) ≤ h, then f ′ = f, g′ = g.
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Applications

• To prove that a Hopf algebra is cofree, and have an explicit basis that shows
cofreeness, i.e. shows the “unique factorisation” of the combinatorial objects;

• To construct isomorphisms:
– Vargas’s self-duality isomorphism: WQSym → WQSym*

(make a monomial basis for WQSym and for WQSym*, and show their
products match)

– An isomorphism: PSym (our new algebra) → PQSym (Novelli-Thibon) ??
obstacle: known bases on PQSym do not satisfy the axioms, but Hugo
Mlodecki has a basis that conjecturally does

Under additional axioms, we can give a cancellation free formula for the antipode in
the monomial basis


