Monomial Bases for Combinatorial Hopf Algebras

> C.Y. Amy Pang
> Department of Mathematics, Hong Kong Baptist University
based on "Hopf algebras of parking functions and decorated planar trees", joint work with Nantel Bergeron, Rafael Gonzalez d'Leon, Shu Xiao Li, Yannic Vargas
presented at AICoVE, 15 June 2021

The Monomial basis of QSym

$$
\begin{aligned}
& \underset{\substack{\text { M }}}{M_{2,1,2}}=\sum_{i<j<k} x_{i}^{2} x_{j}^{1} x_{k}^{2}=x_{1}^{2} x_{2}^{1} x_{3}^{2}+x_{1}^{2} x_{2}^{1} x_{4}^{2}+\ldots x_{1}^{2} x_{3}^{1} x_{4}^{2}+\ldots x_{2}^{2} x_{4}^{1} x_{7}^{2}+\ldots \\
& \text { indexed by compositions }
\end{aligned}
$$

The degree of a composition is the number of squares.

The Monomial basis of QSym

$$
\begin{aligned}
& \sum_{\substack{\text { indexed by compositions }}}^{M_{i, 1,2}}=\sum_{i<j<k} x_{i}^{2} x_{j}^{1} x_{k}^{2}=x_{1}^{2} x_{2}^{1} x_{3}^{2}+x_{1}^{2} x_{2}^{1} x_{4}^{2}+\ldots x_{1}^{2} x_{3}^{1} x_{4}^{2}+\ldots x_{2}^{2} x_{4}^{1} x_{7}^{2}+\ldots \\
& \text { inter }
\end{aligned}
$$

The degree of a composition is the number of squares.
The product (combining of compositions) in the M basis expands positively - it is quasishuffle of blocks:

$$
\begin{aligned}
& \underset{\square, 2}{M_{1,2}} M_{1}=\sum_{i<j} x_{i}^{1} x_{j}^{2} \sum_{k} x_{k}^{1}
\end{aligned}
$$

The Monomial basis of QSym

QSym is a Hopf algebra, i.e. it has a coproduct $\Delta:$ QSym \rightarrow QSym \otimes QSym (breaking of compositions), compatible with its product.
Given $f\left(x_{1}, x_{2}, \ldots\right)$, let $f\left(y_{1}, y_{2}, \ldots, z_{1}, z_{2}, \ldots\right)=\sum_{i} g_{i}\left(y_{1}, y_{2}, \ldots\right) h_{i}\left(z_{1}, z_{2}, \ldots\right)$. Let $\Delta(f)=\sum_{i} g_{i} \otimes h_{i}$, and $\Delta_{+}(f)=\Delta(f)-1 \otimes f-f \otimes 1$.

The coproduct in the M basis

$$
\Delta_{+}\left(M_{1,2,1}^{\square \square}\right)=\Delta_{+}\left(\sum_{i<j<k} x_{i}^{1} x_{j}^{2} x_{k}^{1}\right)=\quad M_{1} \otimes M_{2,1}+
$$

The Monomial basis of QSym

QSym is a Hopf algebra, i.e. it has a coproduct $\Delta:$ QSym \rightarrow QSym \otimes QSym (breaking of compositions), compatible with its product.
Given $f\left(x_{1}, x_{2}, \ldots\right)$, let $f\left(y_{1}, y_{2}, \ldots, z_{1}, z_{2}, \ldots\right)=\sum_{i} g_{i}\left(y_{1}, y_{2}, \ldots\right) h_{i}\left(z_{1}, z_{2}, \ldots\right)$. Let $\Delta(f)=\sum_{i} g_{i} \otimes h_{i}$, and $\Delta_{+}(f)=\Delta(f)-1 \otimes f-f \otimes 1$.

The coproduct in the M basis is deconcatenate between blocks

$$
\Delta_{+}\left(M_{1,2,1}\right)=\Delta_{+}^{\square \square}\left(\sum_{i<j<k} x_{i}^{1} x_{j}^{2} x_{k}^{1}\right)=\begin{array}{ccc}
\\
z_{i}^{1} z_{j}^{2} z_{k}^{1} & y_{i}^{1} z_{j}^{2} z_{k}^{1} & y_{i}^{1} y_{j}^{2} z_{k}^{1} \square \\
\square & y_{i}^{1} y_{j}^{2} y_{k}^{1}
\end{array}
$$

i.e. compositions have a "unique factorisation" and the coproduct deconcatenates the factors - i.e. this coproduct is cofree (i.e. the dual basis in the dual Hopf algebra is free)

Other bases of QSym

M-basis of QSym combining compositions by quasishuffle of blocks; breaking compositions by deconcatenation between blocks.
?-basis of QSym $\longrightarrow \begin{aligned} & \text { combining compositions by ???; } \\ & \text { breaking compositions by ???. }\end{aligned}$

Fundamental basis: $F_{\alpha}=\sum_{\beta \geq \alpha} M_{\beta}$ using the refinement order

$$
\begin{aligned}
& \text { e.g. }{ }_{F_{3,1}}=M_{3,1}+M_{2,1,1}+M_{1,2,1}+M_{1,1,1,1} \\
& \square \\
& \square \square \square
\end{aligned}
$$

The Fundamental basis of QSym

The product in the F basis is the shuffle of squares:

$$
\begin{aligned}
& \underset{\square}{F_{1,2} F_{1}=F_{1,3}}+\underset{\square}{F_{1,2,1}}+\underset{\square}{F_{2,2}}+F_{1,1,2}
\end{aligned}
$$

The Fundamental basis of QSym

The product in the F basis is the shuffle of squares:

$$
\begin{aligned}
& F_{1,2} F_{1}=F_{1,3}+F_{1,2,1}+F_{2,2}+F_{1,1,2} \\
& \square \square \square \square \square \square+F_{\square}^{\square}+F_{1,1,2}+F_{3,1}+F_{1,2,1}+F_{2,1,1} \\
& F_{1,1} F_{2}=F_{1,3}+F_{2,2}+\square \square \square
\end{aligned}
$$

The coproduct in the F basis is deconcatenate between squares - which produces one term in each degree:

$$
\begin{aligned}
& \Delta_{+}\left(F_{3,1}\right)=\Delta_{+}\left(M_{3,1} \quad+M_{2,1,1} \quad+M_{1,2,1} \quad+M_{1,1,1,1}\right) \\
& =\quad M_{1} \otimes M_{2,1}+M_{1} \otimes M_{1,1,1} \\
& +\quad M_{2} \otimes M_{1,1} \quad+M_{1,1} \otimes M_{1,1} \\
& +M_{3} \otimes M_{1}+M_{2,1} \otimes M_{1}+M_{1,2} \otimes M_{1}+M_{1,1,1} \otimes M_{1} \\
& =F_{1} \otimes F_{2,1}+F_{2} \otimes F_{1,1} \quad+F_{3} \otimes F_{1}
\end{aligned}
$$

Other Hopf algebras

on permutations,

- Many other Hopf algebras $\begin{gathered}\text { packed words, } \\ \text { binary trees }\end{gathered}$ have a F-like basis:
- The product is some shuffling of the ground set;
- The coproduct is deconcatenation of the ground set, producing one term of each degree.
 objects, and we can define a M-like basis by $F_{\alpha}=\sum_{\beta \geq \alpha} M_{\beta}$:
- The coproduct in the M basis is cofree, given by deconcatenation "between factors" of a unique factorisation - this is proved ad-hoc;
- The product is ???.

We distill the Aguiar-Sottile approach into axioms: check that shuffling, deconcatenation and the poset interact in these correct ways, and you are guaranteed a M basis with positive product and cofree coproduct.

Axioms for coproduct

Example: a new Hopf algebra PSym of parking functions, viewed as binary trees labelled with a permutation satisfying some conditions
$\Delta 1$. Coproduct in fundamental basis is "deconcatenate everywhere"

$$
\Delta_{+}\left(F_{f}\right)=\sum_{i=1}^{\operatorname{deg} f-1} F_{i_{f}} \otimes F_{f i} ; \quad \operatorname{deg}^{i} f=i
$$

Axioms for coproduct

Example: a new Hopf algebra PSym of parking functions, viewed as binary trees labelled with a permutation satisfying some conditions
$\Delta 1$. Coproduct in fundamental basis is "deconcatenate everywhere"

$$
\Delta_{+}\left(F_{f}\right)=\sum_{i=1}^{\operatorname{deg} f-1} F_{i_{f}} \otimes F_{f^{i}} ; \quad \operatorname{deg}^{i} f=i
$$

E.g.
Δ 2. Deconcatenation is order-preserving: if $f \leq f^{\prime}$, then ${ }^{i} f \leq{ }^{i} f^{\prime}$ and $f^{i} \leq f^{\prime i}$. $f \leq f^{\prime}$ if their trees are comparable in Tamari order and their permutations are comparable in weak order

$\underline{\text { Axioms for coproduct (cont'd) }}$

Theorem : If $\Delta 1-3$ are satisfied, and we define M basis by $F_{f}=\sum_{g \geq f} M_{g}$, then

$$
\Delta_{+}\left(M_{f}\right)=\sum_{i \in \operatorname{GDes}(f)} M_{i_{f}} \otimes M_{f^{i}} . \quad \text { (deconcatenate "between blocks") }
$$

Axioms for coproduct (cont'd)

$\Delta 3$. "Maximal concatenation" is well defined:
Given $g, h, \quad \exists$ unique $\max \left\{\left.f\right|^{i} f=g, f^{i}=h\right\}:=g / h$;
e.g. $\underset{1,1}{\square} / \square=\max \{\underset{1,1,2}{\square}, \underset{1,3}{\square}\}=\underset{1,1,2}{\square}$

Theorem: If $\Delta 1-3$ are satisfied, and we define M basis by $F_{f}=\sum_{g \geq f} M_{g}$, then

$$
\Delta_{+}\left(M_{f}\right)=\sum_{i \in \operatorname{GDes}(f)} M_{i_{f}} \otimes M_{f^{i}} . \quad \text { (deconcatenate "between blocks") }
$$

Axioms for coproduct (cont'd)

$\Delta 3$. "Maximal concatenation" is well defined:
Given $g, h, \quad \exists$ unique $\max \left\{\left.f\right|^{i} f=g, f^{i}=h\right\}:=g / h$;
e.g. $\underset{1,1}{\square} / \square=\max \{\underset{1,1,2}{\square}, \underset{1,3}{\square}\}=\underset{1,1,2}{\square}$

So we can define "between blocks" to be "positions of maximal concatenation", also called global descents $\operatorname{GDes}(f):=\left\{i: f={ }^{i} f / f^{i}\right\}$
Theorem : If $\Delta 1-3$ are satisfied, and we define M basis by $F_{f}=\sum_{g \geq f} M_{g}$, then

$$
\Delta_{+}\left(M_{f}\right)=\sum_{i \in \operatorname{GDes}(f)} M_{i_{f}} \otimes M_{f^{i}} . \quad \text { (deconcatenate "between blocks") }
$$

E.g. in Monomial Basis:

Axioms for product

$m 1$. Product in fundamental basis is a sum of shuffles $\zeta(f, g)$:

$$
F_{f} F_{g}=\sum_{\zeta \in S h(f, g)} F_{\zeta(f, g)}
$$

$m 2$. Shuffles are order-preserving: if $f \leq f^{\prime}, g \leq g^{\prime}$, then $\zeta(f, g) \leq \zeta\left(f^{\prime}, g^{\prime}\right)$. $m 3$. Shuffles are join-preserving: $\zeta\left(f_{1} \vee f_{2}, g_{1} \vee g_{2}\right) \leq \zeta\left(f_{1}, g_{1}\right) \vee \zeta\left(f_{2}, g_{2}\right)$.

Theorem : If $m 1-3$ are satisfied, then the coefficient of M_{h} in $M_{f} M_{g}$ is the number of shuffles ζ satisfying

- $\zeta(f, g) \leq h$;
- if $f^{\prime} \geq f, g^{\prime} \geq g$ satisfy $\zeta\left(f^{\prime}, g^{\prime}\right) \leq h$, then $f^{\prime}=f, g^{\prime}=g$.

Applications

- To prove that a Hopf algebra is cofree, and have an explicit basis that shows cofreeness, i.e. shows the "unique factorisation" of the combinatorial objects;
- To construct isomorphisms:
- Vargas's self-duality isomorphism: WQSym \rightarrow WQSym* (make a monomial basis for WQSym and for WQSym*, and show their products match)
- An isomorphism: PSym (our new algebra) \rightarrow PQSym (Novelli-Thibon) ?? obstacle: known bases on PQSym do not satisfy the axioms, but Hugo Mlodecki has a basis that conjecturally does

Under additional axioms, we can give a cancellation free formula for the antipode in the monomial basis

