
Examples of Markov chains from Hopf algebras (in the sense of [Pan15a]). This version: January 8, 2016. Curated by Amy Pang. Printer-friendly version, plus related summary tables, available at my website.
If you spot an error, or know of any other Markov chains built in a similar way, please let me know.

Markov chain Hopf algebra / Hopf monoid algebra is... basis basis is... |B1| product coproduct rescaling stationary distribution references
commutative? cocommutative? free? cofree? free-commutative? free? cofree? self-dual? multigraded?

shuffling shuffle algebra S x x words / decks of cards x x arbitrary shuffle deconcatenation none uniform [Pan14, Sec. 6.1]
inverse-shuffling free associative algebra S ∗ x x words / decks of cards x x arbitrary concatenation deshuffle none uniform [DPR14, Sec. 6] [Pan14, Ex. 4.6.2, Ex. 4.7.2]
edge-removal Ḡ x x unlabelled graphs x 1 disjoint union induced on subsets none absorbing at empty graph [DPR14, Ex. 3.1] [Pan14, Sec. 5.1]
edge-removal G x x labelled graphs x 1 disjoint union induced on subsets none absorbing at empty graph [DPR14, Ex. 3.2]
restriction-then-induction representations of symmetric groups x x x irreducible representations x 1 external induction sum of restrictions dimension plancherel [Pan14, Ex. 4.1.4, Ex. 4.3.2, Ex. 4.4.3, Ex. 4.5.3, Ex. 4.6.4] [Pan15a, Ex. 3.5] [Pan15b, Sec. 2]
rock-breaking symmetric functions (partitions)⊆ Ḡ x x x elementary or complete x 1 disjoint union ∆((n)) = ∑(i)⊗ (n− i) n!

∏λi!
absorbing at (1,1, . . . ,1) [DPR14, Sec. 4] [Pan14, Sec. 5.2]

tree-pruning Connes-Kreimer x rooted forests x 1 disjoint union cut branches ⊗ trunks n!
∏desc(v) absorbing at disconnected forest [Pan14, Sec. 5.3] [Pan15a, Ex. 5.3]

descent-set-under-shuffling quasisymmetric functions x x fundamental (compositions) x 1 (non-explicit - use Projection Theorem) none proportion of permutations with this descent set [Pan13][Pan14, Sec. 6.2]
jeu-de-taquin Poirier-Reutenauer FSym x standard Young tableaux 1 B2R: add outer box B2R: unbump dimension of shape proportion of standard tableaux with this shape [Pan15b, Sec. 4]
shuffle with standardisation Malvenuto-Reutenauer FQSym x x fundamental (permutations) 1 shifted shuffle deconcatenate and standardise none uniform [Pan15b, Sec. 5]
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