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Part I: The riffle-shuffle

• Cut the deck with symmetric binomial distribution;
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chosen with probability proportional to current pile size.
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Part I: The riffle-shuffle

• Cut the deck with symmetric binomial distribution;

• Drop one-by-one the bottommost card, from a pile
chosen with probability proportional to current pile size.

Equivalently, all interleavings are equally likely.

Randomising n distinct cards needs 3
2 log n shuffles.

Bayer-Diaconis (1992):
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• graded: S =
⊕
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• product m : S ⊗ S → S is sum of all interleavings

• coproduct ∆ : S → S ⊗S is sum of all deconcatenations

∆([155]) = ε⊗ [155] + [1]⊗ [55] + [15]⊗ [5] + [155]⊗ ε

m([15]⊗ [5]) = 2[155] + [515]

empty deck = unit of S
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Consequences

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis
of eigenvectors of m ◦∆ on shuffle algebra, from Hopf
algebraic structure theorems.
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Consequences

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis
of eigenvectors of m ◦∆ on shuffle algebra, from Hopf
algebraic structure theorems.

Corollary (and folklore): Start with n distinct cards in
ascending order. After t riffle-shuffles:

Prob(x→ y) = coefficient of y in
1

2n
m ◦∆(x) for x, y ∈ Bn

Corollary (and folklore): Stationary distribution is uniform.

Expect {number of descents}=

(
1−

(
1

2

)t)
n− 1

2
.

high card on low card
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Other shuffling schemes

Prob(x→ y) = coefficient of y in T(x) for x, y ∈ Bn.

Riffle-shuffle

Top-to-random T = 1
nm ◦∆1,n−1

T = 1
2nm ◦∆

Top-or-bottom-to-random T = 1
2n (m ◦∆1,n−1 +m ◦∆n−1,1)

cut-and-interleave
Diaconis, Fill, Pitman (1992)

Biased cut riffle T =
∑
qi(1− q)n−im ◦∆i,n−i

descent operators
Patras (1994)



Consequences

Theorem (2015): For many significant T
(top-to-random, top-or-bottom-to-random, etc.), we can
algorithmically compute an eigenbasis.

Prob(x→ y) = coefficient of y in T(x) for x, y ∈ Bn.



Consequences

Theorem (2015): For many significant T
(top-to-random, top-or-bottom-to-random, etc.), we can
algorithmically compute an eigenbasis.

Prob(x→ y) = coefficient of y in T(x) for x, y ∈ Bn.

Corollary: Stationary distribution is always uniform.

Prob {descent at bottom}=

(
1−

(
n− 2

n

)t)
1

2
.

Corollary: Start with n distinct cards in ascending order.
After t top-to-random shuffles:



Part II: Break-and-recombine other combinatorial objects

On other combinatorial Hopf algebras, define Markov chain by:
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T = descent operator ∼ style of shuffle

Bn = basis ∼ combinatorial object



Part II: Break-and-recombine other combinatorial objects

On other combinatorial Hopf algebras, define Markov chain by:

Prob(x→ y): = coefficient of y in T(x) for x, y ∈ Bn
T = descent operator ∼ style of shuffle

Bn = basis ∼ combinatorial object

shuffle algebra

Connes-Kreimer trees

−→ card-shuffling

−→ tree pruning

graph Hopf algebra −→ edge removal

symmetric functions,
schur basis

−→ a chain on partitions
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Example: top-to-random on partitions

Prob(λ→ µ): = coefficient of sµ in 1
nm ◦∆1,n−1(sλ).

µ

(3) (2, 1) (1, 1, 1)

(3) 1/3 1/3

λ (2, 1) 1/3 2/3 1/3

(1, 1, 1) 1/3 1/3

sµ
dimµ
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dimλ

To make coefficients
sum to 1, use “the
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Example: top-to-random on partitions

Prob(λ→ µ): = coefficient of sµ in 1
nm ◦∆1,n−1(sλ).

sµ
dimµ

sλ
dimλ

To make coefficients
sum to 1, use “the
Doob transform”

µ

(3) (2, 1) (1, 1, 1)

(3) 1/3 2/3

λ (2, 1) 1/6 2/3 1/6

(1, 1, 1) 2/3 1/3

Divide sλ by number of
standard tableaux of shape λ
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Please tell me your favourite Hopf algebras and
non-negative linear maps

Thank you!


