Card-shuffling via convolutions of projections on combinatorial Hopf algebras

Amy Pang, LaCIM

XXVII FPSAC, Daejeon, Korea 9 July 2015

• Cut the deck with symmetric binomial distribution;

$$i \begin{cases} 1 \heartsuit \\ 2 \diamondsuit \\ 3 \heartsuit \\ 4 \bigstar \\ 5 \bigstar \end{cases}$$
 Prob = $2^{-n} \binom{n}{i}$

• Cut the deck with symmetric binomial distribution;

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$1 \heartsuit \qquad 4 \clubsuit \qquad \mathsf{Prob} = \frac{1}{3}$$
$$\mathsf{rob} = \frac{2}{3} \quad 2 \diamondsuit$$

 $3\heartsuit$

5

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$\mathsf{Prob} = \frac{1}{2} \quad 1 \heartsuit \qquad \qquad 4 \spadesuit \qquad \mathsf{Prob} = \frac{1}{2}$$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

 $\mathsf{Prob} = \frac{1}{1} \quad 1 \heartsuit$

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.
 Equivalently, all interleavings are equally likely.

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.
 Equivalently, all interleavings are equally likely.

- graded: $\mathcal{S} = \bigoplus \mathcal{S}_n$
- basis of S_n is $\mathcal{B}_n := \{ \text{words of length } n \} = \{ \text{decks of } n \text{ cards} \}$ (possibly with repeated letters / cards)

- graded: $\mathcal{S} = \bigoplus \mathcal{S}_n$
- basis of S_n is $\mathcal{B}_n := \{ \text{words of length } n \} = \{ \text{decks of } n \text{ cards} \}$ (possibly with repeated letters / cards)
- product $m : S \otimes S \to S$ is sum of all interleavings $m([15] \otimes [5]) = [155] + [155] + [515]$

- graded: $\mathcal{S} = \bigoplus \mathcal{S}_n$
- basis of S_n is $\mathcal{B}_n := \{ \text{words of length } n \} = \{ \text{decks of } n \text{ cards} \}$ (possibly with repeated letters / cards)
- product $m: S \otimes S \to S$ is sum of all interleavings $m([15] \otimes [5]) = 2[155] + [515]$

- graded: $\mathcal{S} = \bigoplus \mathcal{S}_n$
- basis of S_n is $\mathcal{B}_n := \{ \text{words of length } n \} = \{ \text{decks of } n \text{ cards} \}$ (possibly with repeated letters / cards)
- product $m: S \otimes S \to S$ is sum of all interleavings $m([15] \otimes [5]) = 2[155] + [515]$
- coproduct $\Delta : S \to S \otimes S$ is sum of all deconcatenations $\Delta([155]) = \epsilon \otimes [155] + [1] \otimes [55] + [15] \otimes [5] + [155] \otimes \epsilon$ empty deck = unit of S

- product $m: S \otimes S \to S$ is sum of all interleavings $m([15] \otimes [5]) = 2[155] + [515]$
- coproduct $\Delta : S \to S \otimes S$ is sum of all deconcatenations $\Delta([155]) = \epsilon \otimes [155] + [1] \otimes [55] + [15] \otimes [5] + [155] \otimes \epsilon$

Relation with riffle-shuffling: $\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \operatorname{in} \frac{1}{2^n} m \circ \Delta(x) \operatorname{for} x, y \in \mathcal{B}_n.$

- product $m: S \otimes S \to S$ is sum of all interleavings $m([15] \otimes [5]) = 2[155] + [515]$
- coproduct $\Delta : S \to S \otimes S$ is sum of all deconcatenations $\Delta([155]) = \epsilon \otimes [155] + [1] \otimes [55] + [15] \otimes [5] + [155] \otimes \epsilon$

Relation with riffle-shuffling: $\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \text{ in } \frac{1}{2^n} m \circ \Delta(x) \text{ for } x, y \in \mathcal{B}_n.$

$$\frac{\frac{1}{8}m \circ \Delta([155])}{\frac{1}{8}} = \frac{1}{\frac{1}{8}} \begin{pmatrix} [155] + ([155] + [515] + [551]) \\ + (2[155] + [515]) + [155] \end{pmatrix}$$

- product $m: S \otimes S \to S$ is sum of all interleavings $m([15] \otimes [5]) = 2[155] + [515]$
- coproduct $\Delta : S \to S \otimes S$ is sum of all deconcatenations $\Delta([155]) = \epsilon \otimes [155] + [1] \otimes [55] + [15] \otimes [5] + [155] \otimes \epsilon$

Relation with riffle-shuffling: $\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \operatorname{in} \frac{1}{2^n} m \circ \Delta(x) \operatorname{for} x, y \in \mathcal{B}_n.$

$$\frac{\frac{1}{8}m \circ \Delta([155])}{8} = \frac{1}{\frac{1}{8}} \left(\begin{bmatrix} 155 \end{bmatrix} + \left(\begin{bmatrix} 155 \end{bmatrix} + \begin{bmatrix} 515 \end{bmatrix} + \begin{bmatrix} 551 \end{bmatrix}) \\ + (2[155] + \begin{bmatrix} 515 \end{bmatrix}) + \begin{bmatrix} 155 \end{bmatrix} \right) \\ = \frac{5}{8} \begin{bmatrix} 155 \end{bmatrix} + \frac{2}{8} \begin{bmatrix} 515 \end{bmatrix} + \frac{1}{8} \begin{bmatrix} 551 \end{bmatrix}$$

$$\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \operatorname{in} \frac{1}{2^n} m \circ \Delta(x) \operatorname{for} x, y \in \mathcal{B}_n$$

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis of eigenvectors of $m \circ \Delta$ on shuffle algebra, from Hopf algebraic structure theorems.

$$\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \operatorname{in} \frac{1}{2^n} m \circ \Delta(x) \operatorname{for} x, y \in \mathcal{B}_n$$

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis of eigenvectors of $m \circ \Delta$ on shuffle algebra, from Hopf algebraic structure theorems.

Corollary (and folklore): Stationary distribution is uniform.

$$\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \operatorname{in} \frac{1}{2^n} m \circ \Delta(x) \operatorname{for} x, y \in \mathcal{B}_n$$

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis of eigenvectors of $m \circ \Delta$ on shuffle algebra, from Hopf algebraic structure theorems.

Corollary (and folklore): Stationary distribution is uniform.

Corollary (and folklore): Start with n distinct cards in ascending order. After t riffle-shuffles:

Expect {number of descents} =
$$\left(1 - \left(\frac{1}{2}\right)^t\right) \frac{n-1}{2}$$
.
high card on low card

$$\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \text{ in } \mathbf{T}(x) \text{ for } x, y \in \mathcal{B}_n.$$

Riffle-shuffle $\mathbf{T} = \frac{1}{2^n} m \circ \Delta$

$$Prob(x \to y) = coefficient of y in T(x) for x, y \in \mathcal{B}_n.$$

Top-to-random

Riffle-shuffle

$$\mathbf{T} = \frac{1}{2^n} m \circ \Delta$$

 $\mathbf{T} = \frac{1}{n}m \circ \Delta_{1,n-1}$

Project the coproduct to
$$\mathcal{S}_1\otimes\mathcal{S}_{n-1}$$

$\Delta([155]) = \emptyset \otimes [155] + [1] \otimes [55] + [15] \otimes [5] + [155] \otimes \emptyset$

$$\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \text{ in } \mathbf{T}(x) \text{ for } x, y \in \mathcal{B}_n.$$

Top-to-random

Riffle-shuffle

$$\mathbf{T} = \frac{1}{2^n} m \circ \Delta$$

$$\mathbf{T} = \frac{1}{n}m \circ \Delta_{1,n-1}$$

Project the coproduct to $\mathcal{S}_1 \otimes \mathcal{S}_{n-1}$

$$\Delta_{1,2}([155]) = \emptyset \otimes [155] + [1] \otimes [55] + [15] \otimes [5] + [155] \otimes \emptyset$$

$$\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \text{ in } \mathbf{T}(x) \text{ for } x, y \in \mathcal{B}_n.$$

- Riffle-shuffle $\mathbf{T} = \frac{1}{2^n} m \circ \Delta$
- Top-to-random $\mathbf{T} = \frac{1}{n}m \circ \Delta_{1,n-1}$
- Top-or-bottom-to-random $\mathbf{T} = \frac{1}{2n}(m \circ \Delta_{1,n-1} + m \circ \Delta_{n-1,1})$

$$\Delta([155]) = \emptyset \otimes [155] + [1] \otimes [55] + [15] \otimes [5] + [155] \otimes \emptyset$$

$$\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \text{ in } \mathbf{T}(x) \text{ for } x, y \in \mathcal{B}_n.$$

- Riffle-shuffle $\mathbf{T} = \frac{1}{2^n} m \circ \Delta$
- Top-to-random $\mathbf{T} = \frac{1}{n}m \circ \Delta_{1,n-1}$
- Top-or-bottom-to-random $\mathbf{T} = \frac{1}{2n} (m \circ \Delta_{1,n-1} + m \circ \Delta_{n-1,1})$ Biased cut riffle $\mathbf{T} = \sum q^i (1-q)^{n-i} m \circ \Delta_{i,n-i}$

 $(1-q)^3 \quad q(1-q)^2 \quad q^2(1-q) \quad q^3$ $\Delta([155]) = \emptyset \otimes [155] + [1] \otimes [55] + [15] \otimes [5] + [155] \otimes \emptyset$

$$Prob(x \to y) = coefficient of y in T(x) for x, y \in \mathcal{B}_n.$$

- Riffle-shuffle $\mathbf{T} = \frac{1}{2^n} m \circ \Delta$
- Top-to-random $\mathbf{T} = \frac{1}{n}m \circ \Delta_{1,n-1}$
- Top-or-bottom-to-random $\mathbf{T} = \frac{1}{2n}(m \circ \Delta_{1,n-1} + m \circ \Delta_{n-1,1})$

Biased cut riffle
$$\mathbf{T} = \sum q^i (1-q)^{n-i} m \circ \Delta_{i,n-i}$$

cut-and-interleave Diaconis, Fill, Pitman (1992) descent operators Patras (1994)

 $\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \text{ in } \mathbf{T}(x) \text{ for } x, y \in \mathcal{B}_n.$

Theorem (2015): For many significant T (top-to-random, top-or-bottom-to-random, etc.), we can algorithmically compute an eigenbasis.

 $\operatorname{Prob}(x \to y) = \operatorname{coefficient} \operatorname{of} y \text{ in } \mathbf{T}(x) \text{ for } x, y \in \mathcal{B}_n.$

Theorem (2015): For many significant T (top-to-random, top-or-bottom-to-random, etc.), we can algorithmically compute an eigenbasis.

Corollary: Stationary distribution is always uniform.

Corollary: Start with n distinct cards in ascending order. After t top-to-random shuffles:

Prob {descent at bottom} =
$$\left(1 - \left(\frac{n-2}{n}\right)^t\right) \frac{1}{2}$$

Part II: Break-and-recombine other combinatorial objects

On other combinatorial Hopf algebras, define Markov chain by:

Prob $(x \to y)$: = coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_n$ \mathbf{T} = descent operator ~ style of shuffle \mathcal{B}_n = basis ~ combinatorial object Part II: Break-and-recombine other combinatorial objects

On other combinatorial Hopf algebras, define Markov chain by:

 $\mathsf{Prob}(x \to y)$: = coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_n$ $\mathbf{T} = \mathsf{descent}$ operator \sim style of shuffle

 $\mathcal{B}_n = \mathsf{basis} \sim \mathsf{combinatorial object}$

shuffle algebra

- Connes-Kreimer trees
- graph Hopf algebra

symmetric functions, schur basis

 \rightarrow card-shuffling

- \longrightarrow tree pruning
- \longrightarrow edge removal
- \rightarrow a chain on partitions

 $\operatorname{Prob}(\lambda \to \mu)$: = coefficient of s_{μ} in $\frac{1}{n}m \circ \Delta_{1,n-1}(s_{\lambda})$.

 $\operatorname{Prob}(\lambda \to \mu)$: = coefficient of s_{μ} in $\frac{1}{n}m \circ \Delta_{1,n-1}(s_{\lambda})$.

$$\Delta_{1,n-1}(s_{\lambda}) = \sum_{\nu=\lambda \setminus \Box} s_{(1)} \otimes s_{\nu}; \quad s_{(1)}s_{\nu} = \sum_{\mu=\nu \cup \Box} s_{\mu}$$

 $\operatorname{Prob}(\lambda \to \mu)$: = coefficient of s_{μ} in $\frac{1}{n}m \circ \Delta_{1,n-1}(s_{\lambda})$.

$$\Delta_{1,n-1}(s_{\lambda}) = \sum_{\nu = \lambda \setminus \Box} s_{(1)} \otimes s_{\nu}; \quad s_{(1)}s_{\nu} = \sum_{\mu = \nu \cup \Box} s_{\mu}$$

$$\frac{1}{3}m \circ \Delta_{1,2} \left(\square \square \right) = \frac{1}{3}m \left(\square \otimes \square \right)$$

$$\Delta_{1,n-1}(s_{\lambda}) = \sum_{\nu = \lambda \setminus \Box} s_{(1)} \otimes s_{\nu}; \quad s_{(1)}s_{\nu} = \sum_{\mu = \nu \cup \Box} s_{\mu}$$

$$\Delta_{1,n-1}(s_{\lambda}) = \sum_{\nu = \lambda \setminus \Box} s_{(1)} \otimes s_{\nu}; \quad s_{(1)}s_{\nu} = \sum_{\mu = \nu \cup \Box} s_{\mu}$$

$$\begin{array}{c|c|c} \mu \\ \hline (3) & (2,1) & (1,1,1) \\ \hline (3) & \frac{1/3}{1/3} & \frac{1/3}{1/3} \\ \lambda & (2,1) & \frac{1/3}{1/3} & \frac{2/3}{1/3} & \frac{1/3}{1/3} \\ \hline (1,1,1) & \frac{1/3}{1/3} & \frac{1/3}{1/3} \end{array}$$

$$\operatorname{Prob}(x \to y)$$
: = coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_n$

$$\operatorname{Prob}(x \to y)$$
: = coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_n$

All eigenvalues and multiplicities

 $\frac{j}{n}$, #partitions with j parts of size 1

$$\operatorname{Prob}(x \to y)$$
: = coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_n$

All eigenvalues and multiplicities

 $\frac{j}{n}$, #partitions with j parts of size 1 Explicit expression for all stationary distributions (independent of **T**) Plancherel measure $\frac{(\dim \lambda)^2}{n!}$

$$\operatorname{Prob}(x \to y)$$
: = coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_n$

All eigenvalues and multiplicities

 $\frac{j}{n}$, #partitions with j parts of size 1 Explicit expression for all stationary distributions (independent of **T**) Plancherel measure $\frac{(\dim \lambda)^2}{n!}$

Quotient / sub Hopf algebras give lumpings (independent of T)

RSK shape of top-to-random-with-standardisation = top-to-random on partitions, because $\Lambda \leftarrow \mathbf{FSym} \hookrightarrow \mathbf{FQSym}$

$$\operatorname{Prob}(x \to y)$$
: = coefficient of $\frac{y}{\eta(y)}$ in $\operatorname{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_n$

All eigenvalues and multiplicities

 $\frac{j}{n}$, #partitions with j parts of size 1 Explicit expression for all stationary distributions (independent of **T**) Plancherel measure $\frac{(\dim \lambda)^2}{n!}$

Quotient / sub Hopf algebras give lumpings (independent of T) RSK shape of top-to-random-with standardisation = top-to-random on partitions, because $\Lambda \leftarrow \mathbf{FSym} \hookrightarrow \mathbf{FQSym} \quad \Lambda \leftarrow \cdots \hookrightarrow S?$

Quotient / sub Hopf algebras give lumpings (independent of T) RSK shape of top-to-random-with standardisation = top-to-random on partitions, because $\Lambda \leftarrow \mathbf{FSym} \hookrightarrow \mathbf{FQSym} \quad \Lambda \leftarrow \cdots \hookrightarrow S$?