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Part |: The riffle-shuffle

e Cut the deck with symmetric binomial distribution;

e Drop one-by-one the bottommost card, from a pile
chosen with probability proportional to current pile size.

Equivalently, all interleavings are equally likely.
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Bayer-Diaconis (1992): L
Randomising n distinct cards needs %logn shuffles.
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e product m: S ®S — S is sum of all interleavings
m([15] ® [5]) = 2|155] + [515]
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Consequences

1
Prob(x — y) = coefficient of y in o M O A(x) for x,y € B,

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis
of eigenvectors of m o A on shuffle algebra, from Hopf
algebraic structure theorems.

Corollary (and folklore): Stationary distribution is uniform.

Corollary (and folklore): Start with n distinct cards in
ascending order. After ¢ riffle-shuffles:

1\"\ n—1
Expect {number of descints}: (1 - <§> > " 5

high card on low card
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Other shuffling schemes

Prob(z — y) = coefficient of y in T'(x) for x,y € B,,.

Riffle-shuffle T=,-moA

Top-to-random T==-moAy, 1
Top-or-bottom-to-random T = %(m oA p—1+molA,_11)

Biased cut riffle T=>" qi(l — Q)n_im WAV

(1-9)° q¢1-¢° ¢1-q9 ¢
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Other shuffling schemes

Prob(z — y) = coefficient of y in T'(x) for x,y € B,,.

Riffle-shuffle T=,-moA

1

Top-to-random T=-moAy, 1

Top-or-bottom-to-random T = %(m oA p—1+molA,_11)
Biased cut riffle T=>q¢1—-q" 'mol,_

cut-and-interleave descent operators
Diaconis, Fill, Pitman (1992) Patras (1994)
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Consequences

Prob(z — y) = coefficient of y in T'(x) for x,y € B,,.

Theorem (2015): For many significant T

(top-to-random, top-or-bottom-to-random, etc.), we can
algorithmically compute an eigenbasis.

Corollary: Stationary distribution is always uniform.

Corollary: Start with n distinct cards in ascending order.
After t top-to-random shuffles:

~2\"\ 1
Prob {descent at bottom }= (1 -~ <n ) ) 5
n
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Part |l: Break-and-recombine other combinatorial objects

On other combinatorial Hopf algebras, define Markov chain by:

Prob(xz — y): = coefficient of y in T(x) for x,y € 5,

T = descent operator ~ style of shuffle

B,, = basis ~ combinatorial object

shuffle algebra
Connes-Kreimer trees
graph Hopf algebra

symmetric functions,
schur basis

— card-shuffling
— tree pruning
— edge removal

— a chain on partitions
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Example: top-to-random on partitions

1
n

Atnoi(sn)= D s)®su; smsp= 3 Su

Prob(A — u): = coefficient of 5, in =m o A ,_1(sx).

v=A\UJ p=vUl]
o1 (1) =3 (00) - S0+
u
3) (2,1) (1,1,1)
(3) | Ys s
A (2,1) | Yz 23 1/3
(1,1,1) 1/3 1/3
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Prob(A — p): = coefficient of M Lmo Al,nw
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Prob(A — p): = coefficient of M Lmo Al,nw

Divide s) by number of Sp SA
standard tableaux of shape A  dim pu dim A
1 1 1 2 (1
gme 12 (1) = gm (oL T) =5 TT+5 (3
[ .
To make coefficients
(3 @1) (1,1,1) sum to 1, use “the
(3) /3 %3 Doob transform”
A (2,1) | Ye o 23 1/6
(1,1,1) 2/3 /3
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General theorems

fsize 1

Quotient / sub Hopf algebras give lumpings (independent of T)

RSK shape of top—to—random§m{t‘:ﬂ§s-tﬁﬂd'3'rdis’aﬁo_n

— top-to-random on partitions, because

A« FSym —FQSym A« - — 57



