Card-shuffling via convolutions of projections on combinatorial Hopf algebras

Amy Pang, LaCIM

XXVII FPSAC, Daejeon, Korea
9 July 2015

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;

$$
\text { Prob }=2^{-n}\binom{n}{i}
$$

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$
\begin{array}{lll}
1 \oslash & 4 \uparrow & \text { Prob }=\frac{1}{4} \\
2 \diamond &
\end{array}
$$

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$
\text { Prob }=\frac{2}{3} \begin{array}{ll}
1 \oslash \\
2 \diamond
\end{array} \quad 4 \uparrow \quad \text { Prob }=\frac{1}{3}
$$

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

$$
\text { Prob }=\frac{1}{2} \quad 1 \varnothing
$$

Prob $=\frac{1}{2}$

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

Prob $=\frac{1}{1} \quad 1 \Omega$

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

Equivalently, all interleavings are equally likely.

Part I: The riffle-shuffle

- Cut the deck with symmetric binomial distribution;
- Drop one-by-one the bottommost card, from a pile chosen with probability proportional to current pile size.

Equivalently, all interleavings are equally likely.

Bayer-Diaconis (1992):

$2 \diamond$
30

Randomising n distinct cards needs $\frac{3}{2} \log n$ shuffles.

A new tool: the shuffle (Hopf) algebra \mathcal{S}

- graded: $\mathcal{S}=\bigoplus \mathcal{S}_{n}$
- basis of \mathcal{S}_{n} is $\mathcal{B}_{n}:=\{$ words of length $n\}=\{$ decks of n cards $\}$ (possibly with repeated letters / cards)

A new tool: the shuffle (Hopf) algebra \mathcal{S}

- graded: $\mathcal{S}=\bigoplus \mathcal{S}_{n}$
- basis of \mathcal{S}_{n} is $\mathcal{B}_{n}:=\{$ words of length $n\}=\{$ decks of n cards $\}$ (possibly with repeated letters / cards)
- product $m: \mathcal{S} \otimes \mathcal{S} \rightarrow \mathcal{S}$ is sum of all interleavings

$$
m([15] \otimes[5])=[155]+[155]+[515]
$$

A new tool: the shuffle (Hopf) algebra \mathcal{S}

- graded: $\mathcal{S}=\bigoplus \mathcal{S}_{n}$
- basis of \mathcal{S}_{n} is $\mathcal{B}_{n}:=\{$ words of length $n\}=\{$ decks of n cards $\}$ (possibly with repeated letters / cards)
- product $m: \mathcal{S} \otimes \mathcal{S} \rightarrow \mathcal{S}$ is sum of all interleavings

$$
m([15] \otimes[5])=\quad 2[155]+[515]
$$

A new tool: the shuffle (Hopf) algebra \mathcal{S}

- graded: $\mathcal{S}=\bigoplus \mathcal{S}_{n}$
- basis of \mathcal{S}_{n} is $\mathcal{B}_{n}:=\{$ words of length $n\}=\{$ decks of n cards $\}$ (possibly with repeated letters / cards)
- product $m: \mathcal{S} \otimes \mathcal{S} \rightarrow \mathcal{S}$ is sum of all interleavings

$$
m([15] \otimes[5])=\quad 2[155]+[515]
$$

- coproduct $\Delta: \mathcal{S} \rightarrow \mathcal{S} \otimes \mathcal{S}$ is sum of all deconcatenations

$$
\begin{aligned}
\Delta([155])= & \epsilon \otimes[155]+[1] \otimes[55]+[15] \otimes[5]+[155] \otimes \epsilon \\
& \text { empty deck }=\text { unit of } \mathcal{S}
\end{aligned}
$$

A new tool: the shuffle (Hopf) algebra \mathcal{S}

- product $m: \mathcal{S} \otimes \mathcal{S} \rightarrow \mathcal{S}$ is sum of all interleavings

$$
m([15] \otimes[5])=\quad 2[155]+[515]
$$

- coproduct $\Delta: \mathcal{S} \rightarrow \mathcal{S} \otimes \mathcal{S}$ is sum of all deconcatenations

$$
\Delta([155])=\epsilon \otimes[155]+[1] \otimes[55]+[15] \otimes[5]+[155] \otimes \epsilon
$$

Relation with riffle-shuffling:
$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\frac{1}{2^{n}} m \circ \Delta(x)$ for $x, y \in \mathcal{B}_{n}$.

A new tool: the shuffle (Hopf) algebra \mathcal{S}

- product $m: \mathcal{S} \otimes \mathcal{S} \rightarrow \mathcal{S}$ is sum of all interleavings

$$
m([15] \otimes[5])=\quad 2[155]+[515]
$$

- coproduct $\Delta: \mathcal{S} \rightarrow \mathcal{S} \otimes \mathcal{S}$ is sum of all deconcatenations

$$
\Delta([155])=\epsilon \otimes[155]+[1] \otimes[55]+[15] \otimes[5]+[155] \otimes \epsilon
$$

Relation with riffle-shuffling:
$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\frac{1}{2^{n}} m \circ \Delta(x)$ for $x, y \in \mathcal{B}_{n}$.

$$
\frac{1}{8} m \circ \Delta([155])=\frac{1}{8}\binom{[155]+([155]+[515]+[551])}{+(2[155]+[515])+[155]}
$$

A new tool: the shuffle (Hopf) algebra \mathcal{S}

- product $m: \mathcal{S} \otimes \mathcal{S} \rightarrow \mathcal{S}$ is sum of all interleavings

$$
m([15] \otimes[5])=\quad 2[155]+[515]
$$

- coproduct $\Delta: \mathcal{S} \rightarrow \mathcal{S} \otimes \mathcal{S}$ is sum of all deconcatenations

$$
\Delta([155])=\epsilon \otimes[155]+[1] \otimes[55]+[15] \otimes[5]+[155] \otimes \epsilon
$$

Relation with riffle-shuffling:
$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\frac{1}{2^{n}} m \circ \Delta(x)$ for $x, y \in \mathcal{B}_{n}$.

$$
\begin{aligned}
\frac{1}{8} m \circ \Delta([155])= & \frac{1}{8}\binom{[155]+([155]+[515]+[551])}{+(2[155]+[515])+[155]} \\
& =\frac{5}{8}[155]+\frac{2}{8}[515]+\frac{1}{8}[551]
\end{aligned}
$$

Consequences

$$
\operatorname{Prob}(x \rightarrow y)=\text { coefficient of } y \text { in } \frac{1}{2^{n}} m \circ \Delta(x) \text { for } x, y \in \mathcal{B}_{n}
$$

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis of eigenvectors of $m \circ \Delta$ on shuffle algebra, from Hopf algebraic structure theorems.

Consequences

$$
\operatorname{Prob}(x \rightarrow y)=\text { coefficient of } y \text { in } \frac{1}{2^{n}} m \circ \Delta(x) \text { for } x, y \in \mathcal{B}_{n}
$$

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis of eigenvectors of $m \circ \Delta$ on shuffle algebra, from Hopf algebraic structure theorems.

Corollary (and folklore): Stationary distribution is uniform.

Consequences

$$
\operatorname{Prob}(x \rightarrow y)=\text { coefficient of } y \text { in } \frac{1}{2^{n}} m \circ \Delta(x) \text { for } x, y \in \mathcal{B}_{n}
$$

Theorem (w/ Diaconis, Ram, 2014): Algorithm for a basis of eigenvectors of $m \circ \Delta$ on shuffle algebra, from Hopf algebraic structure theorems.

Corollary (and folklore): Stationary distribution is uniform.
Corollary (and folklore): Start with n distinct cards in ascending order. After t riffle-shuffles:

$$
\text { Expect }\{\text { number of descents }\}=\left(1-\left(\frac{1}{2}\right)^{t}\right) \frac{n-1}{2} .
$$

Other shuffling schemes

$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$.

Riffle-shuffle

$$
\mathbf{T}=\frac{1}{2^{n}} m \circ \Delta
$$

Other shuffling schemes

$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$.

Riffle-shuffle
Top-to-random

$$
\mathbf{T}=\frac{1}{2^{n}} m \circ \Delta
$$

$$
\mathbf{T}=\frac{1}{n} m \circ \Delta_{1, n-1}
$$

Project the coproduct to $\mathcal{S}_{1} \otimes \mathcal{S}_{n-1}$

$$
\Delta([155])=\emptyset \otimes[155]+[1] \otimes[55]+[15] \otimes[5]+[155] \otimes \emptyset
$$

Other shuffling schemes

$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$.

Riffle-shuffle
Top-to-random

$$
\mathbf{T}=\frac{1}{2^{n}} m \circ \Delta
$$

$$
\mathbf{T}=\frac{1}{n} m \circ \Delta_{1, n-1}
$$

Project the coproduct to $\mathcal{S}_{1} \otimes \mathcal{S}_{n-1}$

Other shuffling schemes

$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$.

Riffle-shuffle
Top-to-random
Top-or-bottom-to-random $\mathbf{T}=\frac{1}{2 n}\left(m \circ \Delta_{1, n-1}+m \circ \Delta_{n-1,1}\right)$

$$
\Delta([155])=\emptyset \otimes[155]+[1] \otimes[55]+[15] \otimes[5]+[15.5] \otimes \emptyset
$$

Other shuffling schemes

$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$.

Riffle-shuffle
Top-to-random
Top-or-bottom-to-random $\mathbf{T}=\frac{1}{2 n}\left(m \circ \Delta_{1, n-1}+m \circ \Delta_{n-1,1}\right)$
Biased cut riffle

$$
\mathbf{T}=\frac{1}{2^{n}} m \circ \Delta
$$

$$
\mathbf{T}=\frac{1}{n} m \circ \Delta_{1, n-1}
$$

$$
\mathbf{T}=\sum q^{i}(1-q)^{n-i} m \circ \Delta_{i, n-i}
$$

$$
(1-q)^{3} \quad q(1-q)^{2} \quad q^{2}(1-q) \quad q^{3}
$$

$$
\Delta([155])=\emptyset \otimes[155]+[1] \otimes[55]+[15] \otimes[5]+[155] \otimes \emptyset
$$

Other shuffling schemes

$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$.

Riffle-shuffle
Top-to-random
Top-or-bottom-to-random $\mathbf{T}=\frac{1}{2 n}\left(m \circ \Delta_{1, n-1}+m \circ \Delta_{n-1,1}\right)$
Biased cut riffle
cut-and-interleave Diaconis, Fill, Pitman (1992)

$$
\mathbf{T}=\frac{1}{2^{n}} m \circ \Delta
$$

$$
\mathbf{T}=\frac{1}{n} m \circ \Delta_{1, n-1}
$$

$$
\mathbf{T}=\frac{1}{2 n}\left(m \circ \Delta_{1, n-1}+m \circ \Delta_{n-1,1}\right)
$$

$$
\mathbf{T}=\sum q^{i}(1-q)^{n-i} m \circ \Delta_{i, n-i}
$$

descent operators
Patras (1994)

Consequences

$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$.

Theorem (2015): For many significant \mathbf{T}
(top-to-random, top-or-bottom-to-random, etc.), we can algorithmically compute an eigenbasis.

Consequences

$\operatorname{Prob}(x \rightarrow y)=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$.

Theorem (2015): For many significant \mathbf{T} (top-to-random, top-or-bottom-to-random, etc.), we can algorithmically compute an eigenbasis.

Corollary: Stationary distribution is always uniform.
Corollary: Start with n distinct cards in ascending order. After t top-to-random shuffles:
Prob $\{$ descent at bottom $\}=\left(1-\left(\frac{n-2}{n}\right)^{t}\right) \frac{1}{2}$.

Part II: Break-and-recombine other combinatorial objects

On other combinatorial Hopf algebras, define Markov chain by:
$\operatorname{Prob}(x \rightarrow y):=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$
$\mathbf{T}=$ descent operator \sim style of shuffle

$$
\mathcal{B}_{n}=\text { basis } \sim \text { combinatorial object }
$$

Part II: Break-and-recombine other combinatorial objects

On other combinatorial Hopf algebras, define Markov chain by:

$\operatorname{Prob}(x \rightarrow y):=$ coefficient of y in $\mathbf{T}(x)$ for $x, y \in \mathcal{B}_{n}$

$\mathbf{T}=$ descent operator \sim style of shuffle

$$
\mathcal{B}_{n}=\text { basis } \sim \text { combinatorial object }
$$

shuffle algebra
Connes-Kreimer trees
graph Hopf algebra
symmetric functions, schur basis
\longrightarrow card-shuffling
\longrightarrow tree pruning
\longrightarrow edge removal
\longrightarrow a chain on partitions

Example: top-to-random on partitions

$\operatorname{Prob}(\lambda \rightarrow \mu):=$ coefficient of s_{μ} in $\frac{1}{n} m \circ \Delta_{1, n-1}\left(s_{\lambda}\right)$.

Example: top-to-random on partitions

$\operatorname{Prob}(\lambda \rightarrow \mu):=$ coefficient of s_{μ} in $\frac{1}{n} m \circ \Delta_{1, n-1}\left(s_{\lambda}\right)$.

$$
\Delta_{1, n-1}\left(s_{\lambda}\right)=\sum_{\nu=\lambda \backslash \square} s_{(1)} \otimes s_{\nu} ; \quad s_{(1)} s_{\nu}=\sum_{\mu=\nu \cup \square} s_{\mu}
$$

Example: top-to-random on partitions

$\operatorname{Prob}(\lambda \rightarrow \mu):=$ coefficient of s_{μ} in $\frac{1}{n} m \circ \Delta_{1, n-1}\left(s_{\lambda}\right)$.
$\Delta_{1, n-1}\left(s_{\lambda}\right)=\sum_{\nu=\lambda \backslash \square} s_{(1)} \otimes s_{\nu} ; \quad s_{(1)} s_{\nu}=\sum_{\mu=\nu \cup \square} s_{\mu}$

$$
\frac{1}{3} m \circ \Delta_{1,2}(\square \square \square)=\frac{1}{3} m(\square \otimes \square \square)
$$

Example: top-to-random on partitions

$\operatorname{Prob}(\lambda \rightarrow \mu):=$ coefficient of s_{μ} in $\frac{1}{n} m \circ \Delta_{1, n-1}\left(s_{\lambda}\right)$.
$\Delta_{1, n-1}\left(s_{\lambda}\right)=\sum_{\nu=\lambda \backslash \square} s_{(1)} \otimes s_{\nu} ; \quad s_{(1)} s_{\nu}=\sum_{\mu=\nu \cup \square} s_{\mu}$

$$
\frac{1}{3} m \circ \Delta_{1,2}(\square \square)=\frac{1}{3} m(\square \otimes \square \square)=\frac{1}{3} \square \square+\frac{1}{3} \square
$$

Example: top-to-random on partitions

$\operatorname{Prob}(\lambda \rightarrow \mu):=$ coefficient of s_{μ} in $\frac{1}{n} m \circ \Delta_{1, n-1}\left(s_{\lambda}\right)$.

$\Delta_{1, n-1}\left(s_{\lambda}\right)=\sum_{\nu=\lambda \backslash \square} s_{(1)} \otimes s_{\nu} ; \quad s_{(1)} s_{\nu}=\sum_{\mu=\nu \cup \square} s_{\mu}$

$$
\frac{1}{3} m \circ \Delta_{1,2}(\square \square)=\frac{1}{3} m(\square \otimes \square \square)=\frac{1}{3} \square \square+\frac{1}{3} \square
$$

		μ		
		(3)	$(2,1)$	$(1,1,1)$
λ	(3)	$1 / 3$	$1 / 3$	
	$(2,1)$	$1 / 3$	$2 / 3$	$1 / 3$
	$(1,1,1)$		$1 / 3$	$1 / 3$

Example: top-to-random on partitions

$\operatorname{Prob}(\lambda \rightarrow \mu):=$ coefficient of s_{μ} in $\frac{1}{n} m \circ \Delta_{1, n-1}(S \lambda)$.

Divide s_{λ} by number of standard tableaux of shape λ

		μ		
		(3)	$(2,1)$	$(1,1,1)$
λ	(3)	$1 / 3$	$1 / 3$	
	$(2,1)$	$1 / 3$	$2 / 3$	$1 / 3$
	$(1,1,1)$		$1 / 3$	$1 / 3$

To make coefficients sum to 1 , use "the Doob transform"

Example: top-to-random on partitions

$\operatorname{Prob}(\lambda \rightarrow \mu):=$ coefficient of s_{μ} in $\frac{1}{n} m \circ \Delta_{1, n-1}(S \lambda)$.

Divide s_{λ} by number of standard tableaux of shape λ

		μ		
		(3)	$(2,1)$	$(1,1,1)$
λ	(3)	$1 / 3$	$2 / 3$	
	$(2,1)$	$1 / 6$	$2 / 3$	$1 / 6$
	$(1,1,1)$		$2 / 3$	$1 / 3$

To make coefficients sum to 1 , use "the Doob transform"

General theorems

$$
\operatorname{Prob}(x \rightarrow y):=\text { coefficient of } \frac{y}{\eta(y)} \text { in } \mathbf{T}\left(\frac{x}{\eta(x)}\right) \text { for } x, y \in \mathcal{B}_{n}
$$

General theorems

$\operatorname{Prob}(x \rightarrow y):=$ coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_{n}$
All eigenvalues and multiplicities
$\frac{j}{n}$, \#partitions with j parts of size 1

General theorems

$\operatorname{Prob}(x \rightarrow y):=$ coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_{n}$
All eigenvalues and multiplicities

$$
\frac{j}{n}, \# \text { partitions with } j \text { parts of size } 1
$$

Explicit expression for all stationary distributions
(independent of \mathbf{T})
Plancherel measure $\frac{(\operatorname{dim} \lambda)^{2}}{n!}$

General theorems

$\operatorname{Prob}(x \rightarrow y):=$ coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_{n}$
All eigenvalues and multiplicities

$$
\frac{j}{n}, \# \text { partitions with } j \text { parts of size } 1
$$

Explicit expression for all stationary distributions
(independent of \mathbf{T})

$$
\text { Plancherel measure } \frac{(\operatorname{dim} \lambda)^{2}}{n!}
$$

Quotient / sub Hopf algebras give lumpings (independent of \mathbf{T}) RSK shape of top-to-random-with-standardisation = top-to-random on partitions, because $\Lambda \longleftrightarrow$ FSym \hookrightarrow FQSym

General theorems

$\operatorname{Prob}(x \rightarrow y):=$ coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_{n}$
All eigenvalues and multiplicities

$$
\frac{j}{n}, \# \text { partitions with } j \text { parts of size } 1
$$

Explicit expression for all stationary distributions
(independent of \mathbf{T})

$$
\text { Plancherel measure } \frac{(\operatorname{dim} \lambda)^{2}}{n!}
$$

Quotient / sub Hopf algebras give lumpings (independent of \mathbf{T}) RSK shape of top-to-random- shufle standardisation $=$ top-to-random on partitions, because $\Lambda \pi$ FSym \rightarrow FQSym $\quad \Lambda \leftrightarrow \cdots \hookrightarrow \mathcal{S}$?

General theorems

$\operatorname{Prob}(x \rightarrow y):=$ coefficient of $\frac{y}{\eta(y)}$ in $\mathbf{T}\left(\frac{x}{\eta(x)}\right)$ for $x, y \in \mathcal{B}_{n}$
A Please tell me your favourite Hopf algebras and non-negative linear maps
pf size 1

Thank you!

Quotient / sub Hopf algebras give lumpings (independent of \mathbf{T}) RSK shape of top-to-random shufle standardisation $=$ top-to-random on partitions, because $\Lambda \pi$ FSym \rightarrow FQSym $\quad \Lambda \leftrightarrow \cdots \hookrightarrow \mathcal{S}$?

