MATH 3407, Linear Algebra II Semester 2, 2023 Class Overview

We re-do the theory in Linear Algebra I for polynomials and functions instead of \mathbb{R}^n , and cover some additional details.

Below is a quick comparison of this class with Math 2207 (Linear Algebra I); for simplicity, not all topics in each class are listed. You are expected to be familiar with the course content of Math 2207 as written in http://www.math.hkbu.edu. hk/~amypang/2207/linalbook.pdf.

Math 2207 Linear Algebra I	Math 3407 Linear Algebra II
Vectors: \mathbb{R}^n ;	Vectors: polynomials, matrices, functions;
scalars: \mathbb{R}	scalars: \mathbb{R} , \mathbb{C} ,
Span and linear independence of finite sets	Span and linear independence of infinitely many vectors
Subspaces	Combining subspaces
Linear transformations and standard ma- trix	Linear transformations are represented by multiple matrices, related through "change of coordinates"
Eigenvectors and diagonalisation:	Triangular form and Jordan form for
$A = PDP^{-1}$	non-diagonalisable matrices: $A = PJP^{-1}$
	Linear forms (functions: vector space $\rightarrow \mathbb{R}$)
Orthogonality and dot product (in \mathbb{R}^n)	Quadratic forms and inner product spaces (in abstract vector space)

Some other differences:

Most examples / questions are about \mathbb{R}^n	Most examples / questions are about ab- stract vector spaces, e.g. matrices, func- tions
You are expected to write simple proofs by recalling definitions and rearranging equa- tions	You are expected to write more compli- cated proofs
Vectors are \mathbf{v},\mathbf{w} or handwritten \vec{v}	Vectors are α, β (no arrows nor bold print);
linear transformations are S, T, f	linear transformations are σ,τ
Complete lecture slides available	Class is handwritten "live" and based on textbook; photos of the whiteboard will be on Moodle after class

To save writing time, you are expected to be familiar with the shorthands:

- $\implies ({\rm implies}),$
- \Leftrightarrow , "iff" (if and only if).

 $[\]therefore$ (therefore),

 $[\]therefore$ (because),

 $[\]forall$ (for all),

 $[\]exists$ (there exists),