MATH 3407, Linear Algebra II

Semester 2, 2023

Class Overview

We re-do the theory in Linear Algebra I for polynomials and functions instead of \mathbb{R}^{n}, and cover some additional details.

Below is a quick comparison of this class with Math 2207 (Linear Algebra I); for simplicity, not all topics in each class are listed. You are expected to be familiar with the course content of Math 2207 as written in http://www.math.hkbu.edu. hk/~amypang/2207/linalbook.pdf.

Math 2207 Linear Algebra I	Math 3407 Linear Algebra II
Vectors: $\mathbb{R}^{n} ;$ scalars: \mathbb{R}	Vectors: polynomials, matrices, functions; scalars: \mathbb{R}, \mathbb{C},
Span and linear independence of finite sets	Span and linear independence of infinitely many vectors
Subspaces	Combining subspaces
Linear transformations and standard ma- trix	Linear transformations are represented by multiple matrices, related through "change of coordinates"
Eigenvectors and diagonalisation: $A=P D P^{-1}$	Triangular form and Jordan form for non-diagonalisable matrices: $A=P J P^{-1}$
Orthogonality and dot product (in \mathbb{R}^{n})	Linear forms (functions: vector space $\rightarrow \mathbb{R}$)
Quadratic forms and inner product spaces (in abstract vector space)	

Some other differences:

Most examples / questions are about \mathbb{R}^{n}	Most examples / questions are about ab- stract vector spaces, e.g. matrices, func- tions
You are expected to write simple proofs by recalling definitions and rearranging equa- tions	You are expected to write more compli- cated proofs
Vectors are \mathbf{v}, \mathbf{w} or handwritten \vec{v} linear transformations are S, T, f	Vectors are α, β (no arrows nor bold print); linear transformations are σ, τ
Complete lecture slides available	Class is handwritten "live" and based on textbook; photos of the whiteboard will be on Moodle after class

To save writing time, you are expected to be familiar with the shorthands:
\therefore (therefore),
\because (because),
\forall (for all),
\exists (there exists),
\Longrightarrow (implies),
\Leftrightarrow,"iff" (if and only if).

