Last time: $E \times 8.3 .7 \quad X_{B}(x)=-(x-2)^{5}$

$$
B-2 I=\left(\begin{array}{ccccc}
-1 & 0 & -1 & 1 & 0 \\
-4 & -1 & -3 & 2 & 1 \\
-2 & -1 & -2 & 1 & 1 \\
-3 & -1 & -3 & 2 & 1 \\
-8 & -2 & -7 & 5 & 2
\end{array}\right) \xrightarrow{\text { row reduce }}\left(\begin{array}{ccccc}
-1 & 0 & -1 & 1 & 0 \\
0 & -1 & 0 & -1 & 1 \\
0 & 0 & 1 & -1 & 0 \\
\vdots & \vdots & \ddots & \vdots
\end{array}\right),(B-2 I)^{2}=\left(\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 1 & 0 \\
-1 & -1 & 0 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right)
$$

Step 1: β_{3} diagram:

Step 2: to find β_{3}.

- basis of $\operatorname{Nul}(B-2 I)^{3}=\left\{e_{1}, \cdots, e_{5}\right\}$
- their images under $(B-2 I)^{2}=$ column of $(B-2 I)^{2}$
- a linearly independent subset $=$ egg. column $1 \therefore \beta_{3}=e_{1}$

Step 4: Let $\left\{\beta_{1}, \beta_{i}, \cdots\right\}$ be the vectors in the bottom m levels of existing eigenstrings, extend to $\left\{\beta_{1}, \beta_{2}, \ldots \alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \cdots\right\}$ a sparing set of $\operatorname{Ker}\left(\sigma_{-} \lambda_{6}\right)^{m^{\prime}}$.

- Consider $\left\{\left(\sigma-\lambda_{c}\right)^{m-1}\left(\beta_{1}\right),\left(\sigma-\lambda_{c}\right)^{m^{-1}}\left(\beta_{i 2}\right), \cdots\left(\sigma-\lambda_{1}\right)^{n^{-1}}\left(\alpha_{1}\right),\left(\sigma-\lambda_{c}\right)^{n^{n-1}}\left(\alpha_{2}\right), \cdots\right\}$ these α^{\prime} ore the
- Take a lineally independent subset containing existing egesting batons and cone $\left(\sigma-\lambda_{c}\right)^{-1-1}(\alpha)$-N we eigenstring tops

Ex: Continue with $B: m^{\prime}=2$
Bottom m' levels of existing eigenstrings $=\left\{\beta_{1}, \beta_{2}\right\}$

- A basis of $\mathrm{NuI}(B-2 I)^{2}$: from matrix earlier : $-x_{1}-x_{3}+x_{4}=0 \quad \mapsto\left(\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$
- Apply $B-2 I$ to the spanning set of $\left\{\beta_{1}, \beta_{2}, \alpha_{1}^{\prime}, \alpha_{2}, \alpha_{3}^{\prime}, \alpha_{2}\right\}$ can stop here 0 columns 2,3 have pivots

\therefore choose new top $\left(\beta_{5}\right)$ to correspond to column 3
ie. $\beta_{5}=\alpha_{1}^{\prime}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$
$(B-2 I)\left(\beta_{1}\right)=0 \quad(B-2 I)\left(\alpha_{1}\right)(B-2 I)\left(\alpha_{2}\right) \quad S_{0}: P=\left(\begin{array}{ccccc}0 & -1 & 1 & 0 & 0 \\ 0 & -4 & 0 & -1 & 1 \\ -1 & -2 & 0 & -1 & 0 \\ -1 & -3 & 0 & -1 & 0 \\ -1 & 8 & 0 & -2 & 0\end{array}\right) \quad J=\left(\begin{array}{cccc}2 & 1 & \cdots & \cdots \\ 2 & 1 & 1 \\ \cdots 2 & 2 & 2 & 1 \\ \cdots & \cdots & 2 & 2\end{array}\right) \quad \beta_{4}=(B-2 I) \alpha_{1}^{\prime}$

Shortcut: we can stop at \because we know from diagram we only need one new eigenstring top, i.e. only one α_{i}^{\prime} so that $(B-2 I) \alpha_{i}^{\prime} \cup\left\{\begin{array}{c}\text { previous eigenstring } \\ \text { bottoms }\end{array}\right\}$ is linearly independent, i.e. need an α_{i}^{\prime} so that $(B-2 I) \alpha_{i}^{\prime}$ is not a multiple of β_{1}. And $\alpha_{1}^{\prime}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$
satisfies this.
9.1/9.2 Linear forms and the dual space

From \$7.1: $L(V, W)$ is a vector space.
Def 9.1.1: A linear form or linear functional on V is a linear transformation: $V \rightarrow \mathbb{F}$.
The set of all linear forms on V is the dual space of $V: \widehat{V}=L(V, \mathbb{F})$ (V^{*} in some books)
E_{x} : if $V=\mathbb{R}^{3}$, then $\hat{V}=L\left(\mathbb{R}^{3}, \mathbb{R}\right) \xrightarrow[\text { take standard, }]{\text { matrix }} M_{1,3}(\mathbb{R})$
i.e. every $\phi \in \hat{V}$ has some standard matrix $\left(\begin{array}{lll}a & b & c)\end{array}\right.$
i.e. $\phi\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}a & b & c\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=a x+b y+c z$. $\quad\left(\right.$ ie. $\left.\phi(\alpha)=\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \cdot \alpha-\operatorname{see} \oint 10.2\right)$

$$
\begin{aligned}
\text { A basis of } M_{1,3}(\mathbb{R}) & =\left\{E^{1,1}, E^{1,2}, E^{1,3}\right\} \\
& =\left\{\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)\right\} \\
\therefore \text { A basis of } \widehat{V} & =\left\{\phi_{1}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=x, \phi_{2}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=y, \phi_{3}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=z\right\}
\end{aligned}
$$

To similarly find a basis of \hat{V} for other V, notice: $\phi_{i}\left(e_{i}\right)=1 \quad$ and $\phi_{i}\left(e_{j}\right)=0$ if $i \neq j$.
Def 9.1.3/Th9.1.2: If $\mathcal{A}=\left\{\alpha_{1}, \cdots, \alpha_{n}\right\}$ is a basis of V, then the dual basis to \mathcal{A} is $\hat{\mathcal{N}}=\left\{\phi_{1}, \cdots, \phi_{n}\right\} \subseteq \widehat{V}$ is defined by $\phi_{i}\left(\alpha_{i}\right)=1$ and $\phi_{i}\left(\alpha_{j}\right)=0$ if $i \neq j$. In particular, $\operatorname{dim} \hat{V}=\operatorname{dim} V$. (The order of the basis vectors in A is important!)
$E_{x}: V=P_{<2}(\mathbb{R}), A=\left\{1, x, x^{2}\right\}$
then $\hat{A}=\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ where

$$
\phi_{1}(1)=1, \phi_{1}(x)=0, \phi_{1}\left(x^{2}\right)=0 \text {. }
$$

To get a formula for ϕ_{1} :

$$
\begin{aligned}
& \phi_{1}\left(a+b x+c x^{2}\right) \\
& =a \phi_{1}(1)+b \phi_{1}(x)+c \phi_{1}\left(x^{2}\right) \\
& =a \cdot 1+b \cdot 0+c \cdot 0=a .
\end{aligned}
$$

By same calculation:

$$
\begin{aligned}
& \phi_{2}\left(a+b x+c x^{2}\right)=b \\
& \phi_{3}\left(a+b x+c x^{2}\right)=c
\end{aligned}
$$

i.e. ϕ_{i} is the function that takes the coefficient of α_{i}.
i.e. if $\alpha=a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}$, then $\phi_{i}(\alpha)=a_{i}$.
Another view: we can find a_{i} by evaluating ϕ_{i} :

$$
\alpha=\phi_{1}(\alpha) \alpha_{1}+\cdots+\phi_{n}(\alpha) \alpha_{n}
$$

Interesting application: Lagrange interpolation.

