Make your own examples: choose P, J, let $A=P J P^{-1}$. Use algorithm to find P^{\prime}, J^{\prime}, check $A=P^{\prime} J^{\prime} P^{-1}$ (remember P is not unique).
Step 1: build the eigenstring diagram horizontally

$\left.\operatorname{dim}\left(\operatorname{Ker}\left(\sigma-\lambda_{l}\right)\right)\right)=3$
$\operatorname{dim}\left(\operatorname{ker}(\sigma-\lambda c)^{2}\right)=5$
$\operatorname{dim}\left(\operatorname{ker}(\sigma-\lambda c)^{3}\right)=6$
$\operatorname{dim}\left(\operatorname{ker}(\sigma-\lambda c)^{4}\right)=7$
$\operatorname{dim}\left(\operatorname{ker}(\sigma-\lambda c)^{5}\right)=7$

Key: the bottom " "levels" of the λ-eigenstrings is a basis for $\operatorname{Ker}\left(\sigma-\lambda_{1}\right)^{i}$ (or $\left.\operatorname{Nul}(A-\lambda I)^{i}\right)$
\therefore calculate $\operatorname{dim} \operatorname{Ker}(\sigma-\lambda c)^{i}$ for $i=1,2, \ldots$, number of vectors in level i

$$
=\operatorname{dim} \operatorname{ker}(\sigma-\lambda c)^{i}-\operatorname{dim} \operatorname{Ker}(\sigma-\lambda c)^{i-1}
$$

stop when $\operatorname{dim} \operatorname{Ker}\left(\sigma-\lambda_{c}\right)^{i-1}=\operatorname{dim} \operatorname{Ker}\left(\sigma-\lambda_{c}\right)^{i}$ in $(A-\lambda I)^{i}$.

Ex: $A=\left(\begin{array}{cccc}3 & -2 & 2 & -1 \\ 0 & 6 & -3 & 2 \\ 0 & 3 & 0 & 2 \\ 0 & 0 & 0 & 3\end{array}\right) \quad$ Given: $X_{A}(x)=(x-3)^{4}$

$$
A-3 I=\left(\begin{array}{cccc}
0 & -2 & 2 & -1 \\
0 & 3 & -3 & 2 \\
0 & 3 & -3 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\text { row reduction }}\left(\begin{array}{cccc}
0 & -2 & 2 & -1 \\
0 & 0 & 0 & 1 \\
\vdots & \cdot & \cdot & 1
\end{array}\right)
$$

2 free variables, so $\operatorname{dim} \operatorname{Nul}(A-3 I)=2$ \therefore bottom level: $3 \quad 3$
possible diagrams: $\quad(A-3 I)^{2}=$ zero matrix $-\operatorname{dim} \operatorname{Nu}\left((A-3 I)^{2}\right)=4$

$(A-3 I)^{3}=$ zero matrix $\therefore \operatorname{dim} \operatorname{Nul}\left((A-3 I)^{3}\right)=4=\operatorname{dim} \operatorname{Nul}\left((A-3 I)^{2}\right)$
so the diagram is complete.
Warning: if there is more than one eigenvalue, then $(A-\lambda I)^{i}$ will not be the zero matrix.

Information from the Jordan form:

$$
\begin{aligned}
X_{A}(x) & = \pm\left(x-\lambda_{1}\right)^{m_{1}} \cdots\left(x-\lambda_{k}\right)^{m_{k}} \lambda_{i} \text { distinct } \\
m_{i} & =\text { multiplicity of } \lambda_{i} \\
& =\text { sum of the sizes of } \lambda_{i} \text {-blocks } \\
& =\operatorname{dim} K_{\lambda_{i}} \quad \text { (generalised } \lambda_{i} \text {-eigenspace) } \\
\operatorname{dim} E_{\lambda} & =\operatorname{dim} \text { Nut (A- } \lambda I) \\
& =\text { number of vectors in bottom level of } \lambda \text {-eigenstrings } \\
& =\text { number of } \lambda \text {-blocks. }
\end{aligned}
$$

Th:

- $m_{A}(x)=\left(x-\lambda_{1}\right)^{d_{1}} \cdots\left(x-\lambda_{k}\right)^{d_{k}} \quad d_{i}=$ size of the biggest λ_{i} block.

$$
\text { e.g. } \prod_{3} ; m(x)=(x-3)^{3} ; \quad!_{3} \prod_{3}: m(x)=(x-3)^{2}
$$

In particular: if $m_{A}(x)=\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{k}\right)$, then all blocks have size $1 \Rightarrow A$ is diagonalisable.
Proof: i) why σ satisfies $\left(x-\lambda_{1}\right)^{d_{1}} \ldots\left(x-\lambda_{k}\right)^{d_{k}}$.
(ii why σ does not satisfy a i.e. why $\left(\sigma-\lambda_{1}\right)^{d_{1}} \cdots\left(\sigma-\lambda_{k}\right)^{d_{k}}(\beta)=0$ for each βn the Jordan basis.

$$
\because j \leqslant d_{k} \text { so }\left(\sigma-\lambda_{k} l\right)^{d}(\beta)=0
$$

so $\left(\sigma-\lambda_{1}\right)^{k_{1}} \cdots\left(\sigma-\lambda_{k-1}\right)^{d_{k-1}}\left(\sigma-\lambda_{k-1}\right)^{d_{k}}(\beta)=0$
ii) et $f(x)=\left(x-\lambda_{1}\right)^{a_{1}} \cdots\left(x-\lambda_{k-1}\right)^{a_{k-1}}\left(x-\lambda_{k}\right)^{a_{k}}$

$$
=\underbrace{\left.\left(x-\lambda_{k}\right)^{a_{k}}\right) .\left(x-\lambda_{k}-1\right)}_{g(x)}
$$

where $a_{k}<d_{k}$
Then $\exists \beta$ in level $a_{k}+1$ of a λ_{k}-eigenstring so $\left(\sigma-\lambda_{k}\right)^{a_{k}}(\beta)=\beta^{\prime}$ is a λ_{k}-eigenvector.
So $\begin{aligned} {[f(\sigma)](\beta) } & =g(\sigma) \circ\left(\sigma-\lambda_{k}\right)^{a_{k}}(\beta) \\ & =g(\sigma) \beta^{\prime}\end{aligned}$

$$
=g(\sigma) \beta^{\prime}
$$

$\begin{aligned} & \text { so } \sigma \text { does } \\ & \text { not satisfy } f\end{aligned}=g\left(\lambda_{k}\right) \beta^{\prime}+H H^{\prime}$ QI not satisfy $f . \quad \neq \overrightarrow{0} \quad \because \beta^{\prime} \neq \overrightarrow{0}$
and $g\left(\lambda_{k}\right) \neq 0$.
$\because \lambda_{k}$ is not a solution to $\left(x-\lambda_{1}\right)^{a_{1}} \cdots\left(x-\lambda_{k-1}\right)^{a_{k-1}}$

