Ex: 8.2.6, to illustrate the page below

Last year: if J is diagonal, then column i of J is $\left(\begin{array}{c}0 \\ i \\ \lambda_{i} \\ 0\end{array}\right)=\left[\sigma\left(\beta_{i}\right)\right]_{B}$

$$
\text { ie. } \sigma\left(\beta_{i}\right)=\lambda_{i} \beta_{i}
$$

Still true for size I block
egg. in Ex. 8.2.6 $\sigma\left(\beta_{4}\right)=2 \beta_{4}$
In bigger blocks:

$$
\begin{array}{lll}
\sigma\left(\beta_{1}\right)=3 \beta_{1} & \text { ie. } & (\sigma-3 c) \beta_{1}=0 \\
\sigma\left(\beta_{2}\right)=3 \beta_{2}+\beta_{1} & (\sigma-3 c) \beta_{2}=\beta_{1} \\
\sigma\left(\beta_{3}\right)=3 \beta_{3}+\beta_{2} & \left(\sigma-3_{c}\right) \beta_{3}=\beta_{2}
\end{array}
$$

ie. $\left(\sigma-\lambda_{c}\right)$ sends a basis vector to the previous one.
In general, if $\left\{\beta_{1}, \cdots, \beta_{n}\right\}$ is
a basis for a λ-Jordan block,
then $\left(\sigma-\lambda_{2}\right) \beta_{1}=\overrightarrow{0} \quad$ (i.e. β_{1} is an eigenvector)
and, $\forall j>1, \quad(\sigma-\lambda) \beta_{j}=\beta_{j-1}$

$$
\begin{gathered}
\left(\sigma-\lambda_{c}\right)^{2} \beta_{j}=\beta_{j-2} \\
\vdots \\
\left(\sigma-\lambda_{c}\right)^{j-1} \beta_{j}=\beta_{1} \\
\left(\sigma-\lambda_{c}\right)^{j} \beta_{j}=\sigma
\end{gathered}
$$

\therefore all β_{j} satisfy $(\sigma-\lambda l)^{s}\left(\beta_{j}\right)=\overrightarrow{0}$ for same s.

Def 8.2.1, 8.2.2,8.2.4: Let $\sigma \in L(v, v)$
α is a generalised λ-eigenvector if
$\left(\sigma-\lambda_{c}\right)^{s}(\alpha)=\overrightarrow{0}$ for some s, and $\alpha \neq \overrightarrow{0}$.
$K_{\lambda}=\left\{\alpha \mid\left(\sigma-\lambda_{c}\right)^{s}(\alpha)=\overrightarrow{0}\right.$ for some $\left.s\right\}$
is the generalised λ-eigenspace.
If $\left(\sigma-\lambda_{c}\right)^{s}(\alpha)=\overrightarrow{0}$, but $\left(\sigma-\lambda_{c}\right)^{s-1}(\alpha) \neq \overrightarrow{0}$
then the list (order is important)

$$
\begin{aligned}
& Z(\alpha ; \lambda)=\left\{\left(\sigma-\lambda_{c}\right)^{s-1}(\alpha),\left(\sigma-\lambda_{c}\right)^{s-2}(\alpha), \cdots\left(\sigma-\lambda_{c}\right) \alpha, \alpha\right\} \\
& \text { is a cycle of aeneralisol }
\end{aligned}
$$

is a cycle of generalised λ-eigenvectors.

$$
Z(\alpha ; \lambda)=\underbrace{\left\{\left(\sigma-\lambda_{c}\right)^{s-1}(\alpha)\right.}_{\begin{array}{c}
\text { initial } \\
\text { vector } \\
\text { bottom }
\end{array}}, \cdots \quad\left(\sigma-\lambda_{c}\right)(\alpha), \stackrel{\alpha}{\downarrow}\}
$$

\therefore The basis B such that $[\sigma]_{B}$ is in Jordan form (ie. the columns of P such that $\left.A=P J P^{-1}\right)$ is a basis of eigenstrings (one string for each $\mathrm{b} / o \mathrm{ck}$).

Algorithm outline - Null Space Algorithm
($2^{\text {nd }}$ algorithm in textbook)
O. Find eigenvalues by solving

$$
X_{\sigma}(x)=0 \text {. }
$$

1. find the eigenstring diagram
-ie. find J.
2. find the longest eigenstrings

- enough to find their tops, then apply ($\sigma-\lambda_{c}$)

4. find the shorter eigenstrings.

How K_{λ} is like ε_{λ} :
Th. 8.2.3. K_{λ} is a subspace

$$
k_{\lambda} \geqslant \varepsilon_{\lambda}
$$

- K_{λ} is invariant under σ,
i.e. $\sigma\left(K_{\lambda}\right) \subseteq K_{\lambda}$.
(see proof in book)

