How to describe images: Lemma: $\sigma(Span(A)) = Span \{\sigma(\alpha) | \alpha \in A\}$ exercise: remove In particular: if U'has a spanning set, this condition by then $\sigma(U')$ is a subspace. (Th. 7.1.10, Cor 7.1.11) checking subspace axioms. Proof: 2: if BESpan (o(d)) (dEA) then $\beta = \alpha_1 \sigma(\alpha_1) + \dots + \alpha_n \sigma(\alpha_n)$ for some $\alpha_i \in \mathcal{A}$. $= \sigma(a_1a_1 + a_na_n) \in \sigma(\text{Span}(A)).$ Span(x)

 $\leq : if \beta \in \sigma(\text{Span}(A))$ then $\beta = \sigma(a_1 a_1 + \dots + a_n a_n)$ for some died $= a_1 \sigma(a_1) + \dots + a_n \sigma(a_n)$ ESpan (o(x) | d EA3

Prop. 7.1.14, Cor. 7.1.15: Preimages of subspaces are subspaces Proof: HW

Th. 7.1.17 Rank-Nullity Theorem if dim U <00 and oel then rank o + nullity o = Elsewhere in algebra -Theorem - e.g. Th. Proof: Let dim U=n. Let dim kero = t Take bases Ex,...,

$$\sigma = \dim U$$

See webpage for different proof -- also works for infinite-dimensional U.

Th. 7. 1.18 Let of L(U,V): o is injective ⇒ nullity o = 0 ker 0 = { 0 } (i.e. one-to-one) the only subspace See 2207 of Limension O is EB3. neek 4 p24 or textbook O is surjective (i.e. onto) $() tange \sigma = V () tank \sigma = dim V$ definition of surjective continuition of the only subspace of V, surjective with the same dimension as V, is V. or is an isomorphism (i.e. injective and surjective) Combine: \iff nullity $\sigma = 0$, rank $\sigma = \dim V$ \implies dim U = dim V.

Th. 7. 1. 19: (Invertible Matrix Theorem):
if
$$\dim U = \dim V$$
 ($< \infty$) and $\sigma \in L(U,V)$
then nullity $\sigma = 0$
 $\iff rank \sigma = \dim V$ (by RNT)
 $\therefore \sigma$ is injective $\iff \sigma$ is surjective.

is surjective, but not injective. exercise: find a o: VAY that is injective but not surjective