How to describe images:
Lemma: $\sigma(\operatorname{Span}(\mathcal{A}))=\operatorname{Span}\{\sigma(\alpha) \mid \alpha \in \mathcal{A}\}$
In particular: if U^{\prime} has a spanning set, \longleftarrow exercise: remove then $\sigma\left(U^{\prime}\right)$ is a subspace.
(Th. 7.1.10, Cor 7.1 .11) checking subspace

$$
\begin{aligned}
\text { Proof: } \geqslant & \text { Th. } 7.1 .10, \operatorname{cor} 7.1 .11) \\
& \text { if } \beta \in \operatorname{Span}\{\sigma(\alpha) \mid \alpha \in \mathcal{A}\}
\end{aligned}
$$

then

$$
\begin{aligned}
\beta & =a_{1} \sigma\left(\alpha_{1}\right)+\cdots+a_{n} \sigma\left(\alpha_{n}\right) \quad \text { for some } \alpha_{i} \in \mathcal{A} \\
& =\sigma\left(a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}\right) \quad . \quad \text {. } \quad \text {. } \quad \text {. }
\end{aligned}
$$

$$
=\sigma(\underbrace{\left.a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}\right)}_{\operatorname{span}^{n}(A)} \in \sigma(\operatorname{span}(A))
$$

$$
\begin{aligned}
& \leq \text { if } \beta \in \sigma\left(S_{\text {pan }}(A)\right) \\
& \text { then } \beta=\sigma\left(a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}\right) \text { for some } \alpha_{i} \in \lambda \\
&=a, \sigma\left(\alpha_{1}\right)+\cdots+\operatorname{an} \sigma\left(\alpha_{n}\right) \\
& \in \operatorname{Span}\{\sigma(\alpha) \mid \alpha \in \mathcal{A}\}
\end{aligned}
$$

Prop. 7.1.14, Cor 7.1.15:
Prinages of subspaces are subspaces
Proof: HW.

Th. 7.1.17 Rank-Nallity Theorem (RNT): if $\operatorname{dim} U<\infty$ and $\sigma \in L(U, U)$

$$
\begin{aligned}
& \text { if } \operatorname{dim} U<\infty \text { and } \sigma \in \operatorname{dim} U \\
& \text { then rank } \sigma+\text { nullity } \sigma=\operatorname{dim} \text { kero }
\end{aligned}
$$ dim ranges dimkero

(Elsewhere in algebra - First Isomorphism
Theorem - egg. Th. 4.105 .15 in Abstract Algebra
Proof: Let $\operatorname{dim} U=n$. $\operatorname{ker} \sigma \subseteq U$, so dimker $\sigma \leq n$.
Let $\operatorname{dim} k \sigma \sigma=k$.
Take bases $\left\{\alpha_{1}, \cdots, \alpha_{k}\right\}$ of $\operatorname{ker} \sigma$,

$\left\{\beta_{1}, \ldots, \beta_{n-k}\right\}$ of a complement of ger σ. (ie. $\left\{\alpha_{1}, \cdots, \alpha_{k}, \beta_{1}, \cdots, \beta_{n-k}\right\}$ is a basis of U)
We show $\left\{\sigma\left(\beta_{1}\right), \cdots, \sigma\left(\beta_{n+k}\right\}\right.$ is a basis for rance σ - that wouh men rank σ $=\operatorname{din}$ rance $\sigma=n-k=\sin U-$ nullity σ done.
see $H W$.
See webpage for different proof -- also works for infinite-dimensional U

Th. 7. 1.18 Let $\sigma \in L(U, U)$:
σ is injective (i.e. one-to-one)

$$
\Longleftrightarrow
$$

$$
\operatorname{ker} \sigma=\{\overrightarrow{0}\} \Longleftrightarrow \text { nullity } \sigma=0
$$

the only subspace week 4 PR or textbook of dimension O is $\{0\}$.
σ is surjective
(i.e. onto)

$$
\stackrel{\Longleftrightarrow \text { range } \sigma=V}{\Longleftrightarrow} \quad \underset{\uparrow}{\Longleftrightarrow} \text { rank } \sigma=\operatorname{dim} V
$$

Combine: σ is an isomorphism (i.e. inject with the same dimension as V, is V.

$$
\begin{aligned}
& \Longleftrightarrow \text { nullity } \sigma=0, \operatorname{rank} \sigma=\operatorname{dim} V \\
& \Rightarrow \operatorname{dim} U=\operatorname{dim} V .
\end{aligned}
$$

Th. 7. 1. 19 : (Invertible Matrix Theorem):

$$
\text { if } \operatorname{dim} U=\operatorname{dim} V(<\infty) \text { and } \sigma \in L(U, V)
$$

then nullity $\sigma=0$
$\Leftrightarrow \operatorname{rank} \sigma=\operatorname{dim} V \quad($ by RNT $)$
$\therefore \sigma$ is injective $\Leftrightarrow \sigma$ is surjective.
\therefore to check if σ is an isomorphism only need to check one of
Warning: this is false if $\operatorname{dim} U=\infty$ e.g. differentiation: $\mathbb{R}[x] \rightarrow \mathbb{R}[x]$
is surjective, but not injective. exercise: find a $\sigma: V \geqslant V$ that is ejective but not surjective

