$\cdot \sigma : \mathbb{F}[x] \longrightarrow \mathbb{F}[x]$ multiplication by some fixed p(x) EFE23. i.e. [G(f)](x) = f(x)p(x).e.g. $\sigma: P_{e_2}(\mathbb{R}) \longrightarrow P_{e_4}(\mathbb{R})$ multiplication by 2+x2.=p(x) $\sigma(a+bx) = (a+bx)(2+x^2)$ $= 2q + 2bx + ax^2 + bx^3$

 $\cdot \sigma : C^{\circ}(\mathbb{R}) \longrightarrow \mathbb{R}$ evaluation at some fixed a ER. i.e. $\sigma(f) = f(\alpha)$. e.g. evaluation at 2=a $\sigma(a+bx+cx^2)$ = a+b2+c4 exercise: check or is linear

 $\sigma: \mathcal{P}_{<3}(\mathbb{R}) \longrightarrow \mathbb{R} \quad \sigma(f) = f(2)$

To make more linear transformations from these basic ones: · Prop. 7.1.8 and Def: L(U,V) is the set of linear transformations from U to V. It is a vector space with operations $(\sigma + \tau)(\alpha) = \sigma(\alpha) + \tau(\alpha)$ $(a\sigma)(\alpha) = a(\sigma(\alpha))$ $\frac{P_{rop.71.7}}{A \text{ composition of linear transformations is}}$ inear (proof in HW)

· Th. 7.1.4 If $\sigma \in L(U,V)$ is invertible, then $\sigma' \in L(V,U)$ Def if $\sigma \in L(U,V)$ and $W \subseteq U$ is a subspace, then the restriction $ol_{w} \in L(W,V)$ is defined by $\sigma|_w(\alpha) = \sigma(\alpha)$ See evaluation example: OEL(C°(R), R) we considered of Proder.

Subspaces related to linear transformations:

Def: given
$$\sigma \in L(U,V)$$
, subspaces $U' \subseteq U, V' \subseteq V$.
The image of U' , $\sigma(U') = \{\sigma(A) \mid A \in U'\} \subseteq V$
In particular:
 $U = \sigma = \sigma(U) = \{\sigma(A) \mid A \in U\}$.
the range of σ is $\sigma(U) = \{\sigma(A) \mid A \in U\}$.
 $\sigma(U') = range(\sigma|_{U'})$

• The preimage of V' is

$$\sigma''[V'] = \{ d \in U \mid \sigma(d) \}$$

 $\sigma'' [v'] = \{ d \in U \mid \sigma(d) \}$
 $\sigma'' [v'] = \{ d \in U \mid \sigma(d) \}$
 $\sigma'' [v'] = \{ d \in U \mid \sigma(d) \}$
 $The particular.$
the kernel is $ker(\sigma) = \sigma''[[\sigma]] = \{ \sigma \in U \}$

EV'] EU. 5(2)= 2)

 $\underline{\mathsf{E}}_{\star}: \ \sigma: \mathbb{R}[\mathtt{x}] \longrightarrow \mathbb{R}[\mathtt{x}], \ \sigma(\mathtt{f}) = \mathtt{f}'$ $\sigma(P_{43}(\mathbb{R})) = P_{42}(\mathbb{R})$ $\sigma(fax|a\in\mathbb{R}) = fa|a\in\mathbb{R}] = P_{z_1}(\mathbb{R})$ $\sigma^{-1}[P_{<1}(\mathbb{R})] = P_{<2}(\mathbb{R})$ Note: $\sigma' \left[\sigma(U') \right] \neq U'$ Question: is $\sigma(\sigma'[V']) = V'$ for this σ ? for other σ ?