$\sigma: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$
multiplication by some fired $p(x) \in \mathbb{F}[x]$.
ie. $[\sigma(f)](x)=f(x) p(x)$.
eg. $\sigma: P_{c_{2}}(\mathbb{R}) \rightarrow P_{e_{4}}(\mathbb{R})$
multiplication by $2+x^{2}=p(x)$

$$
\begin{aligned}
\sigma(a+b x) & =(a+b x)\left(2+x^{2}\right) \\
& =2 a+2 b x+a x^{2}+b x^{3}
\end{aligned}
$$

- $\sigma \cdot C^{0}(R) \longrightarrow R$
evaluation at some fired $a \in \mathbb{R}$.

$$
\text { ie. } \sigma(f)=f(a) \text {. }
$$

e.g. evaluation at $z=a$

$$
\begin{aligned}
& \sigma: P_{<3}(\mathbb{R}) \rightarrow \mathbb{R} \quad \sigma(f)=f(2) \\
& \sigma\left(a+b x+c x^{2}\right) \\
= & a+b 2+c 4
\end{aligned}
$$

exercise: check σ is linear
$\left(\begin{array}{l}\text { also } \sigma: \mathbb{F}[x] \rightarrow M_{n, n}(\mathbb{R}) \\ \quad \text { by evaluating at an n matrix: } o(f)=f(A)\end{array}\right.$
also $\sigma: \mathbb{F}[x] \rightarrow M_{n, n}(\mathbb{R})$
by evaluating at an n matrix: $o(f)=f(A)$

To make more linear transformations from thee base ans:
 transformations from U to V. It is a vector space with operations

- Th. 7.1.4 If $\sigma \in L(U, V)$ is invertible, then $\sigma^{-1} \in L(V, U)$

Def if $\sigma \in L(U, V)$ and $W \subseteq U$ is a subspace, then the restriction $\sigma_{w} \in L(W, V)$ is defined by $\left.\sigma\right|_{w}(\alpha)=\sigma(\alpha)$
See evaluation example: $\sigma \in L(C(\mathbb{R}), \mathbb{R})$ we considered $\left.\sigma\right|_{P_{33}(\mathbb{R})}$.

Subspaces related to linear transformations:
Def: given $\sigma \in L(U, V)$, subspaces $U^{\prime} \subseteq U, V^{\prime} \leq V$.

- The image of $U^{\prime}, \sigma\left(U^{\prime}\right)=\left\{\sigma(\alpha) \mid \alpha \in U^{\prime}\right\} \subseteq V$

In particular:
 the range of σ is $\sigma(U)=\{\sigma(\alpha) \mid \alpha \in U\}$.

- The preimage of V^{\prime} is

$$
\sigma^{-1}\left[v^{\prime}\right]=\left\{\alpha \in U \mid \sigma(\alpha) \in V^{\prime}\right\} \subseteq U \text {. }
$$

$గ_{0}^{1}$ o might
not be mextible $\sigma^{-1} \mathrm{~V}$? Ul es $-\sigma$,
In particular.
the kennel is $\operatorname{ker}(\sigma)=\sigma^{-1}[\{\overline{0}\}]$

$$
=\{\alpha \in U \mid \sigma(\alpha)=\overrightarrow{0}\}
$$

Ex:

$$
\begin{aligned}
& \sigma: \mathbb{R}[x] \rightarrow \mathbb{R}[2], \sigma(f)=f^{\prime} \\
& \sigma\left(P_{<3}(\mathbb{R})\right)=P_{<2}(\mathbb{R}) \\
& \sigma(\{a x \mid a \in \mathbb{R}\})=\{a \mid a \in \mathbb{R}\}=P_{<_{1}}(\mathbb{R}) \\
& \sigma^{-1}\left[P_{<_{1}}(\mathbb{R})\right\}=P_{<2}(\mathbb{R})
\end{aligned}
$$

Note: $\sigma^{-1}\left[\sigma\left(U^{\prime}\right)\right] \neq U^{\prime}$
Question:

$$
\begin{array}{r}
\text { is } \sigma\left(\sigma^{-1}\left[V^{\prime}\right]\right)=V^{\prime} \text { for this } \sigma \text { ? } \\
\\
\text { for other } \sigma \text { ? }
\end{array}
$$

