amy pang git hut io /3407
black - old
blue - new
§6.1 Basic properties of vector spaces
A rector space over $\mathbb{F}$ is a set with exstain later mptand $F=P$ for row
addition and scalar multiplication satisfying
10 axioms (see reference sheet)
Exs: A list of n numbers:
usual
(2) $\mathbb{R}^{n}=\left\{\left.\left[\begin{array}{c|c}x_{1} \\ \vdots \\ x_{n}\end{array}\right] \right\rvert\, \begin{array}{c}1, \cdots, x_{n} \in \mathbb{R}\end{array}\right\}$ addition and scalar multiplication

Ex 6.1-11 sequences $\left\{\left(x_{1}, x_{2}, \cdots\right) \mid x_{i} \in \mathbb{R}\right\}$ componentwise addition and scalar multiplication:

$$
\begin{gathered}
\cdot\left(x_{1}, x_{2}, \ldots\right)+\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots\right) \\
=\left(x_{1}+x_{1}^{\prime}, x_{2}+x_{2}^{\prime}, \ldots\right) \\
\cdot c\left(x_{1}, x_{2}, \ldots\right)=\left(c x_{1}, c x_{2}, \ldots\right)
\end{gathered}
$$

Check $V 4: \overrightarrow{0}=(0,0, \cdots)$ satisfies $\left(x_{1}, x_{2}, \cdots\right)^{\prime}+(0,0, \cdots)=\left(x_{1}, x_{2}, \cdots\right)$
Ex6.1-12 convergent sequences (i.e. $\lim _{n \rightarrow \infty} x_{n}$ exists) To check V4 - need to show $(0,0, \ldots)$ is convergent $V \backslash \quad\left(x_{1}+x_{1}^{\prime}, x_{2}+x_{2}^{\prime}, \cdots\right)$ is convergent see Functional Analysis. $\left(x_{1}, x_{2}, \cdots\right),\left(x_{1}^{\prime}, x_{2}^{\prime}\right.$, is convergent
(3) $M_{m, n}(\mathbb{R}), m \times n$ matrices with entries in $\mathbb{R}$.
(4) Functions from any nen-empty domain $S$ to $\mathbb{R}$.
$f+g$ defined by $(f+g)(s)=f(s)+g(s)$. cf $(c f)(s)=c[f(s)]$
e.g. $V 4: \vec{O}$ is the zero function: $\vec{O}(s)=0$ for all $s \in S$
Many interesting vector spaces come from choosing particular domains $S$ and particular "types" of functions
(5)

$$
\left.\begin{array}{l}
S=[0,1]=\{x \mid 0 \leqslant x \leqslant 1\} \\
C^{0}([0,1])=\{f:[0,1] \rightarrow \mathbb{R} \text { that are } \\
\text { continuous }
\end{array}\right\}
$$

(7) $S=\mathbb{R}$
$\mathbb{R}[x]=\{f: \mathbb{R} \rightarrow \mathbb{R}$ that are polynomials $\}$
(8)

$$
\begin{aligned}
P_{n}(\mathbb{R}) & =\left\{\begin{array}{r}
f: \mathbb{R} \rightarrow \mathbb{R} \text { that are polynomials } \\
\quad \text { of degree }<n
\end{array}\right\} \\
& =\left\{a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1} \mid a_{i} \in \mathbb{R}\right\}
\end{aligned}
$$

About $\mathbb{F}$ : We can change the set of scalars from $\mathbb{R}$ to $\mathbb{C}$ (complex numbers)
egg. $\mathbb{C}^{n}$ is a vector space over $\mathbb{C}$.
Also $\left.M_{m, n}(\mathbb{C}), \mathbb{C}\right]$,
$P_{n}(\mathbb{C})$
We write $\mathbb{F}$ to mean $\mathbb{R}$ or $\mathbb{C}$.
Non-examinable: there are other possibilities for $F($ a field , see $\oint 0.1)$ egg. $\mathbb{F}=\{0,1\}$ with

