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What is Linear Algebra?
Linear algebra is the study of “adding things”. ???

different “additions”. This means we only need to study these properties once,
not separately for each type of “addition” (better explanation in Week 7).

Because so many problems require “adding things”, linear algebra is one of the
best tools in mathematics.

(picture from mememaker.net)

In mathematics, there are many situations
where we need to “add things” (e.g. numbers,
functions, shapes), and linear algebra is about
the properties that are common to all these
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The concepts in linear algebra are
important for many branches of
mathematics:

All these classes list Linear Algebra
as a prerequisite
(Info from math department website)
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This class is about more than calculations. From the official syllabus:

Linear algebra is used in future courses in entirely different ways. So it’s not enough to
know routine calculations; you need to understand the concepts and ideas, to solve
problems you haven’t seen before on the exam. This will require words and not just
formulae.

For many people, this is different from their previous math classes, and will require a lot
of study time.
(Week 1 is straightforward computation; the abstract theory starts in Week 2.)
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§1.1: Systems of Linear Equations
Linear Algebra starts with linear equations.

Example: y = 5x+ 2 is a linear equation. We can take all the variables to the
left hand side and rewrite this as (−5)x+ (1)y = 2.

Example: 3(x1 + 2x2) + 1 = x1 + 1 (2)x1 + (6)x2 = 0

Example: x2 =
√
2(
√
6− x1) + x3

√
2x1 + (1)x2 + (−1)x3 = 2

√
3

x2 = 2
√
x1 xy + x = e5

The following two equations are not linear, why?

The problem is that the variables
are not only multiplied by numbers.

In general, a linear equation is an equation of the form

a1x1 + a2x2 + · · ·+ anxn = b.

x1, x2, . . . xn are the variables. a1, a2, . . . an are the coefficients.
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A linear equation has the form a1x1 + a2x2 + . . . anxn = b.

Definition: A system of linear equations (or a linear system) is a collection of
linear equations involving the same set of variables.

x +y = 3
3x +2z = −2

Example: is a system of 2 equations in 3
variables, x, y, z. Notice that not every
variable appears in every equation.

Definition: A solution of a linear system is a list (s1, s2, . . . , sn) of numbers that
makes each equation a true statement when the values s1, s2, . . . , sn are
substituted for x1, x2, . . . , xn respectively.
Definition: The solution set of a linear system is the set of all possible solutions.

Example: One solution to the above system is (x, y, z) = (2, 1,−4), because
2 + 1 = 3 and 3(2) + 2(−4) = −2.
Question: Is there another solution? How many solutions are there?
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Fact: (which we will prove in the next class) A linear system has either
• exactly one solution
• infinitely many solutions
• no solutions

Definition: A linear system is consistent if it has a solution,

consistent
consistent
inconsistent

consistent inconsistent consistent

and inconsistent if it does not have a solution.
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consistent inconsistentconsistent

Which of these cases are consistent?

i.e. ax+ by + cz = d
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Our goal for this week is to develop an efficient algorithm to solve a linear system.

Example:

R1 + 2R2 →R1

R2 R2 +R1 →

Definition: Two linear systems are equivalent if they have the same solution set.

So the three linear systems above are different but equivalent.

A general strategy for solving a linear system: replace one system with an

equivalent system that is easier to solve.

HKBU Math 2207 Linear Algebra Semester 2 2020, Week 1, Page 9 of 29

We simplify the writing by using matrix notation, recording only the coefficients
and not the variables.

[

1 −2 −1

−1 3 3

]

[

1 −2 −1

0 1 2

] [

1 0 3

0 1 2

]

coefficient
of x1

coefficient
of x2

right hand
side

[

1 −2 −1

−1 3 3

]

The augmented matrix of a linear system contains the right
hand side:

The coefficient matrix of a linear system is the left hand side
only:

[

1 −2

−1 3

]

R1 + 2R2 →R1

R2 R2 +R1 →

(The textbook does not put a vertical line between the coefficient matrix and the right
hand side, but I strongly recommend that you do to avoid confusion.)
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In this example, we solved the linear system by applying elementary row operations
to the augmented matrix (we only used 1. above, the others will be useful later):
1. Replacement: add a multiple of one row to another row.

2. Interchange: interchange two rows.

3. Scaling: multiply all entries in a row by a nonzero constant.

Ri → Ri+cRj

Ri → Rj , Rj → Ri

Ri → cRi, c 6= 0

Definition: Two matrices are row equivalent if one can be transformed into the
other by a sequence of elementary row operations.
Fact: If the augmented matrices of two linear systems are row equivalent, then the
two systems have the same solution set, i.e. they are equivalent linear systems.

R1 + 2R2 →R1

R2 R2 +R1 →

[

1 −2 −1

−1 3 3

]

[

1 −2 −1

0 1 2

] [

1 0 3

0 1 2

]



EXAMPLE:

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

−4x1 + 5x2 + 9x3 = −9

1 −2 1 0
0 2 −8 8

−4 5 9 −9

x1 − 2x2 + x3 = 0
2x2 − 8x3 = 8

− 3x2 + 13x3 = −9

1 −2 1 0
0 2 −8 8

x1 − 2x2 + x3 = 0
x2 − 4x3 = 4

− 3x2 + 13x3 = −9

1 −2 1 0
0 1 −4 4
0 −3 13 −9

x1 − 2x2 + x3 = 0
x2 − 4x3 = 4

x3 = 

1 −2 1 0
0 1 −4 4

x1 − 2x2 = −3
x2 =

x3 = 3

1 −2 0 −3

0 0 1 3

x1 =

x2 = 16
x3 = 3

0 1 0 16
0 0 1 3

Solution:

Check: Is 29,16,3 a solution of the original system?

x1 x2 x3
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R2 + 4R3

R1 −R3

[

1 −2 −1

−1 3 3

]

[

0 1 2

0 1 2

]

Warning: Do not do multiple elementary row operations at the same time, except
adding multiples of the same row to several rows.

x1 − 2x2 = −1

−x1 + 3x2 = 3

R2 +R1

R1 +R2

These are NOT equivalent
systems: in the system on the
right, x1 can take any value,
which is not true for the system
on the left.

x2 = 2

x2 = 2
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Sometimes we are not interested in the exact value of the solutions, just the number
of solutions. In other words:
1. Existence of solutions: is the system consistent?
2. Uniqueness of solutions: if a solution exists, is it the only one?

Answering this requires less work than finding the solution.

We can stop here:
back-substitution shows
that we can find a unique
solution.

Example:



EXAMPLE: Is this system consistent?

x1 − 2x2 + 3x3 = −1

5x1 − 7x2 + 9x3 = 0

3x2 − 6x3 = 8



EXAMPLE: For what values of h will the following system be consistent?

x1 − 3x2 = 4

−2x1 + 6x2 = h



Section 1.2: Row Reduction and Echelon Forms

Echelon form (or row echelon form):
1. All nonzero rows are above any rows of all zeros.
2. Each leading entry (i.e. left most nonzero entry) of a row is in a column to the right of the
leading entry of the row above it.
3. All entries in a column below a leading entry are zero.

EXAMPLE: Echelon forms

(a)

■ ∗ ∗ ∗ ∗

0 ■ ∗ ∗ ∗

0 0 0 0 0

0 0 0 0 0

(b)

■ ∗ ∗

0 ■ ∗

0 0 ■

0 0 0

(c)

0 ■ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 ■ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 ■ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 ■ ∗ ∗ ∗

0 0 0 0 0 0 0 0 ■ ∗ ∗

Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:

4. The leading entry in each nonzero row is 1.
5. Each leading 1 is the only nonzero entry in its column.

EXAMPLE (continued):

Reduced echelon form :

0 1 ∗ 0 0 ∗ ∗ 0 0 ∗ ∗

0 0 0 1 0 ∗ ∗ 0 0 ∗ ∗

0 0 0 0 1 ∗ ∗ 0 0 ∗ ∗

0 0 0 0 0 0 0 1 0 ∗ ∗

0 0 0 0 0 0 0 0 1 ∗ ∗

Motivation: it is easy to solve a linear system whose augmented matrix is in reduced echelon form



EXAMPLE: Are these matrices in echelon form, reduced echelon form, or
neither?

1 0 0

1 0 0

0 1 1



1 0 1 0

0 1 1 0

0 0 0 1



1 1 0 0

0 1 1 0

0 0 0 1



0 1 0 1

0 0 1 0

0 0 0 0


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reduced echelon form

echelon form

Here is the example from p10. Notice
that we use row operations to first put
the matrix into echelon form, and then
into reduced echelon form.

Can we always do this for any linear
system?
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Theorem: Any matrix A is row-equivalent to exactly one reduced echelon
matrix, which is called its reduced echelon form and written rref(A).

These processes of row operations (to get to echelon or reduced echelon form)
are called row reduction.

So our general strategy for solving a linear system is: apply row operations to its
augmented matrix to obtain its rref.

And our general strategy for determining existence/uniqueness of solutions is:
apply row operations to its augmented matrix to obtain an echelon form, i.e. a
row-equivalent echelon matrix.

Warning: an echelon form is not unique. Its entries depend on the row
operations we used. But its pattern of � and ∗ is unique.
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augmented matrix of linear
system

echelon
form

reduced
echelon
form

Row reduction:

existence and
uniqueness of
solutions

solution set

The rest of this section:
• The row reduction algorithm (p21-25);
• Getting the solution, existence/uniqueness from the (reduced) echelon form

(p26-29).
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Important terms in the row reduction algorithm:
• pivot position: the position of a leading entry in a row-equivalent echelon

matrix.
• pivot: a nonzero entry of the matrix that is used in a pivot position to create

zeroes below it.
• pivot column: a column containing a pivot position.

The black squares are the
pivot positions.



Row reduction algorithm:

EXAMPLE: 
0 3 −6 6 4 −5

3 −7 8 −5 8 9

1 −3 4 −3 2 5


1. The top of the leftmost nonzero column is a pivot position.

2. Put a pivot in this position, by scaling or interchanging rows.
1 −3 4 −3 2 5

3 −7 8 −5 8 9

0 3 −6 6 4 −5


R3

R1

3. Create zeroes in all positions below the pivot, by adding multiples of the
top row to each row.

1 −3 4 −3 2 5

0 3 −6 6 4 −5


4. Ignore this row and all rows above, and repeat steps 1-3.




1 −3 4 −3 2 5

0 2 −4 4 2 −6

0 3 −6 6 4 −5


1. The top of the leftmost nonzero column is a pivot position.

2. Put a pivot in this position, by scaling or interchanging rows.
1 −3 4 −3 2 5

0 3 −6 6 4 −5


3. Create zeroes in all positions below the pivot, by adding multiples of the

top row to each row.
1 −3 4 −3 2 5

0 1 −2 2 1 −3


4. Ignore this row and all rows above, and repeat steps 1-3.




1 −3 4 −3 2 5

0 1 −2 2 1 −3

0 0 0 0 1 4


1. The top of the leftmost nonzero column is a pivot position.

2. Put a pivot in this position, by scaling or interchanging rows.

3. Create zeroes in all positions below the pivot, by adding multiples of the
top row to each row.

We are at the bottom row, so we don’t need to repeat anymore. We have arrived
at an echelon form.

5. To get from echelon to reduced echelon form (back substitution):
Starting from the bottom row: for each pivot, add multiples of the row
with the pivot to the other rows to create zeroes above the pivot.


1 −3 4 −3 0 −3

0 1 −2 2 0 −7

0 0 0 0 1 4


R1 − 2R3

R2 −R3

 0 1 −2 2 0 −7

0 0 0 0 1 4


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Check your answer: www.wolframalpha.com
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Getting the solution set from the reduced echelon form:





1 0 −2 3 0 −24

0 1 −2 2 0 −7

0 0 0 0 1 4





x1 −2x3 + 3x4 =−24
x2 −2x3 + 2x4 = −7

x5 = 4

A basic variable is a variable corresponding to a pivot column.
All other variables are free variables.

6. Write each row of the augmented matrix as a linear equation.

basic variables: x1, x2, x5, free variables: x3, x4.

The free variables can take any value. These values then uniquely determine the
basic variables.

Example:
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7. Take the free variables in the equations to the right hand side, and add
equations of the form “free variable = itself”, so we have equations for each
variable in terms of the free variables.

x1 =−24 +2x3 −3x4

x2 = −7 +2x3 −2x4

x3 = x3

x4 = x4

x5 = 4













x1

x2

x3

x4

x5













=













−24 +2s−3t
−7 +2s−2t

s

t

4













Example:
So the solution set is

where s and t can take any value.

What this means: for every choice of s and t, we get a different solution:
e.g. s = 0, t = 1: (x1, x2, x3, x4, x5) = (−27,−9, 0, 1, 4)

s = 1, t = −1: (x1, x2, x3, x4, x5) = (−19,−3, 1,−1, 4)
and infinitely many others. (Exercise: check these two are solutions.)

We will see a better way to write the solution set next week (Week 2 p29-31, §1.5).
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Answering existence and uniqueness of solutions from the echelon form

Example: On p14 we found 



1 −2 3 −1

5 −7 9 0

0 3 −6 8





The last equation says 0x1 + 0x2 + 0x3 = 3, so this system is inconsistent.

Generalising this observation gives us “half” of the following theorem:

Theorem 2: Existence and Uniqueness:

A linear system is consistent if and only if an echelon form of its augmented

matrix has no row of the form [0 . . . 0|�] with � 6= 0.





1 −2 3 −1

0 3 −6 5

0 0 0 3





row-reduction

Be careful with the logic here: this theorem says “if and only if”, which means it

claims two different things:

• If a linear system is consistent, then an echelon form of its augmented matrix

cannot contain [0 . . . 0|�] with � 6= 0.
This is the observation from the example above.





1 −2 3 −1

5 −7 9 0

0 3 −6 8




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As for the uniqueness of solutions:
Theorem 2: Existence and Uniqueness:
If a linear system is consistent, then:
- it has a unique solution if there are no free variables;
- it has infinitely many solutions if there are free variables.

In particular, this proves the fact we saw earlier, that a linear system has either
a unique solution, infinitely many solutions, or no solutions.

Warning: In general, the existence of solutions is unrelated to the uniqueness
of solutions. (We will meet an important exception in §2.3.)

• If there is no row [0 . . . 0|�] with � 6= 0 in an echelon form of the augmented
matrix, then the system is consistent.

This is because we can continue the row-reduction to the rref, and then the
solution method of p26-27 will give us solutions.
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Remember from last week:
Fact: A linear system has either
• exactly one solution
• infinitely many solutions
• no solutions
We gave an algebraic proof via row reduction, but the picture, although not a
proof, is useful for understanding this fact.
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This week and next week, we will think more geometrically about linear systems.

We are aiming to understand the two key concepts in three ways:
• The related computations: to solve problems about a specific linear system

with numbers (Week 2 p10, Week 3 p9-10).
• The rigorous definition: to prove statements about an abstract linear system

(Week 2 p15, Week 3 p13).
• The conceptual idea: to guess whether statements are true, to develop a plan

for a proof or counterexample, and to help you remember the main theorems
(Week 2 p13-14, Week 3 p3-5). This informal view is for thinking only, NOT
for answering problems on homeworks and exams.

1.3-1.4 Span - related to existence of solutions
§1.5 A geometric view of solution sets (a detour)
§1.7 Linear independence - related to uniqueness of solutions
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§1.3: Vector Equations
A column vector is a matrix with only one column.

Until Chapter 4, we will say “vector” to mean “column vector”.

A vector u is in R
n if it has n rows, i.e. u =








u1

u2

...
un








Example:

[
1
3

]

and

[
2
1

]

are vectors in R
2.

Vectors in R
2 and R

3 have a geometric meaning: think of

[
x
y

]

as the point (x, y)

in the plane.

[
2
1

]
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There are two operations we can do on vectors:

addition: if u =








u1

u2

...
un








and v =








v1
v2
...
vn







, then u+ v =








u1 + v1
u2 + v2

...
un + vn







.

scalar multiplication: if u =








u1

u2

...
un








and c is a number (a scalar), then cu =








cu1

cu2

...
cun







.

These satisfy the usual rules for arithmetic of numbers, e.g.

u+ v = v + u, c(u+ v) = cu+ cv, 0u = 0 =






0
...
0




 .



Parallelogram rule for addition of two vectors:

If u and v in R2 are represented as points in the plane, then u + v corresponds to the fourth

vertex of the parallelogram whose other vertices are 0, u and v. (Note that 0 =
0

0
.)

EXAMPLE: Let u =
1

3
and v =

2

1

1 2 3 4
x1

1

2

3

4
x2



EXAMPLE: Let u =
1

2
. Express u, 2u, and −3

2 u on a graph.

−2 −1 1 2
x1

−3

−2

−1

1

2

3

4
x2
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Combining the operations of addition and scalar multiplication:
Definition: Given vectors v1,v2, . . . ,vp in R

n and scalars c1, c2, . . . , cp, the vector

c1v1 + c2v2 + · · ·+ cpvp

is a linear combination of v1,v2, . . . ,vp with weights c1, c2, . . . , cp.

Example: u =

[
1
3

]

, v =

[
2
1

]

. Some linear combinations of u and v are:

3u+ 2v =

[
7

11

]

.

u− 3v =

[
−5
0

]

.

1

3
u+ 0v =

[
1/3
1

]

.

0 = 0u+ 0v =

[
0
0

]

.

(i.e. u+ (−3)v)

Study tip: an ”example” after a
definition does NOT mean a
calculation example. These more
theoretical examples are objects
(vectors, in this case) that satisfy
the definition, to help you
understand what the definition
means. You should also make your
own examples when you see a
definition.
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Geometric interpretation of linear combinations: “all the points you can go to if
you are only allowed to move in the directions of v1, . . . ,vp”.



EXAMPLE: Let v1 =
2

1
and v2 =

−2

2
. Express each of the following as a linear

combination of v1 and v2:

a =
0

3
, b =

−4

1
, c =

6

6
, d =

7

−4

−8 −6 −4 −2 2 4 6 8
x1

−8

−6

−4

−2

2

4

6

8
x2



EXAMPLE: Let a1 =

4
2
14

, a2 =

3
6

10
, and b =

−2
8

−

.

Express b as a linear combination of a1 and a2.

Solution: Vector b is a linear combination of a1 and a2

Vector equation:

Corresponding linear system:

Corresponding augmented matrix:

4 3

2 6

14 10

1 0

0 1

−2

0 0

2

Reduced echelon form:

|

|

8

0

−2
8

−8

if ______________________________________________

When we don't have the grid paper:

Exercise: Use this algebraic method on the examples on the previous page and check that you get the 
same answer.
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What we learned from the previous example:

1. Writing b as a linear combination of a1, . . . ,ap is the same as solving the
vector equation

x1a1 + x2a2 + · · ·+ xpap = b;

2. This vector equation has the same solution set as the linear system whose
augmented matrix is





| | | | |
a1 a2 . . . ap b

| | | | |



 .

In particular, it is not always possible to write b as a linear combination of given
vectors: in fact, b is a linear combination of a1,a2, . . . ,ap if and only if there is
a solution to the linear system with augmented matrix





| | | | |
a1 a2 . . . ap b

| | | | |



 .
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Definition: Suppose v1,v2, . . . ,vp are in R
n. The span of v1,v2, . . . ,vp, written

Span {v1,v2, . . . ,vp} ,

is the set of all linear combinations of v1,v2, . . . ,vp.

In other words, Span {v1,v2, . . . ,vp} is the set of all vectors which can be
written as x1v1 + x2v2 + · · ·+ xpvp for any choice of weights x1, x2, . . . , xp.

In set notation:

Span {v1,v2, . . . ,vp} = {x1v1 + x2v2 + · · ·+ xpvp | x1, . . . , xp ∈ R} .

the set of such that

︸ ︷︷ ︸

vectors of the form
x1v1 + x2v2 + · · ·+ xpvp

x1, . . . xp are real numbers
(i.e. they can take any value)

︸ ︷︷ ︸

the ∈ sign means “is in”
6∈ means
“is not in”



DEFINITION: Span {v1, v2, . . . , vp} = {x1v1 + x2v2 + . . . + xpvp | x1, . . . , xp ∈ R} 

EXAMPLE: Span of one vector in R3:

When p = 1, the definition says Span {v1} = {x1v1 | x1 ∈ R},

i.e. Span {v1} is all scalar multiples of v1.

• Span {0} = {0}, because x10 = 0 for all scalars x1.

• If v1 is not the zero vector, then Span {v1} is
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This is the plane
spanned by {v1,v2}.

e.g. v1 =





1
1
2



,

v2 =





2
2
4





e.g. v1 =





3
1
2



, v2 =





1
4
1





Example: Span of two vectors in R
3:

When p = 2, the definition says Span {v1,v2} = {x1v1 + x2v2 | x1, x2 ∈ R}.



A first exercise in writing proofs.

Each proof is different. Here are some general guidelines, but not every proof is like this. In particular,
do NOT memorise and copy the equations in a particular proof, it will NOT work for a different question.

EXAMPLE: Prove that, if u is in Span {v1,v2,v3}, then 2u is in Span {v1,v2,v3}.

STRATEGY:
Step 1: Find the conclusion of the proof, i.e. what the question is asking for. Using definitions

(ctrl-F in the notes if you don’t remember), write it out as formulas:

Step 2: on a separate piece of paper, use definitions to write out the given information as
formulas. Be careful to use different letters in different formulas.

Step 3: If the required conclusion (from Step 1) is an equation: start with the left hand side, and
calculate/reorganise it using the information in Step 2 to obtain the right hand side.

(More examples: week 3 p13, week 4 p22, week 5 p17, week 5 p19, many exercise sheets.)

The professional way to write this (which may be confusing for beginners):

In more complicated proofs, you may want to use theorems (see week 5 p26).
To improve your proofs:

• Memorise your definitions, i.e. how to translate a technical term into a formula.

• After finishing a proof, think about why that strategy works, and why other strategies that you
tried didn’t work.

• Come to office hours with questions from homework or the textbook, we can do them together.
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Recall from page 10 that writing b as a linear combination of a1, . . . ,ap is
equivalent to solving the vector equation

x1a1 + x2a2 + · · ·+ xpap = b,

and this has the same solution set as the linear system whose augmented matrix
is 



| | | | |
a1 a2 . . . ap b

| | | | |



 .

In particular, b is in Span {a1,a2, . . . ,ap} if and only if the above linear system
is consistent.

We now develop a different way to write this linear system.
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§1.4: The Matrix Equation Ax = b

We can think of the weights x1, x2, . . . , xp as a vector.

The product of an m× p matrix A and a vector x in R
p is the linear combination

of the columns of A using the entries of x as weights:

Ax =





| | | |
a1 a2 . . . ap
| | | |










x1

...
xp




 = x1a1 + x2a2 + · · ·+ xpap.

Example:





4 3
2 6
14 10





[
−2
2

]

= −2





4
2
14



+ 2





3
6
10



 =





−2
8

−8



.

m rows, p columns
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There is another, faster way to compute Ax, one row of A at a time:

Warning: The product Ax is only defined if the number of columns of A equals
the number of rows of x. The number of rows of Ax is the number of rows of A.

Warning: Always write Ax, with the matrix on the left and the vector on the right
- xA has a different meaning. And do not write A · x, that has a different meaning.

It is easy to check that A(u+ v) = Au+Av and A(cu) = cAu.

Example:





4 3
2 6
14 10





[
−2
2

]

=





4(−2) + 3(2)
2(−2) + 6(2)

14(−2) + 10(2)



 =





−2
8

−8



.

Example:





4 3
2 6
14 10





[
−2
2

]

= −2





4
2
14



+ 2





3
6
10



 =





−2
8

−8



.
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We have three ways of viewing the same problem:
1. The system of linear equations with augmented matrix [A|b],
2. The vector equation x1a1 + x2a2 + · · ·+ xpap = b,
3. The matrix equation Ax = b.

These three problems have the same solution set, so the following three things are
the same (they are simply different ways to say “the above problem has a
solution”):
1. The system of linear equations with augmented matrix [A|b] has a solution,
2. b is a linear combination of the columns of A (or b is in the span of the

columns of A),
3. The matrix equation Ax = b has a solution.

Another way of saying this: The span of the columns of A is the set of vectors b
for which Ax = b has a solution.
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The span of the columns of A is the set of vectors b for which Ax = b has a solution.

Example: If A =





3 1
1 4
2 1



, then the relevant vectors are v1 =





3
1
2



, v2 =





1
4
1



.

b is on the plane spanned by v1 and v2, so
Ax = b has a solution. The echelon form of

[A|b] is





� ∗ ∗
0 � ∗
0 0 0



.

c is not on the plane spanned by v1 and v2, so
Ax = c does not have a solution. The echelon

form of [A|c] is





� ∗ ∗
0 � ∗
0 0 �



.

b

c
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Warning: If A is an m× n matrix, then the pictures on the previous page are for
the right hand side b ∈ R

m, not for the solution x ∈ R
n (as we were drawing in

Week 1, and also in p29-31 later this week). In this example, we cannot draw the
solution sets on the same picture, because the solutions x are in R

2, but our
picture is in R

3.

Because b = x1v1 + x2v2, the way to see a solution x on this R3 picture is like
on p9: x gives the location of b relative to the gridlines drawn by v1 and v2, i.e
xi tells you how far b is in the vi direction (see week 8 p22). For example, for the
lower purple dot, x1 ∼ 2.2 and x2 ∼ 0.2.
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So these three things are the same:
1. The system of linear equations with augmented matrix [A|b] has a solution,
2. b is a linear combination of the columns of A (or b is in the span of the

columns of A),
3. The matrix equation Ax = b has a solution.

One question of particular interest: when are the above statements true for all
vectors b in R

m? i.e. when is Ax = b consistent for all right hand sides b, and
when is Span {a1,a2, . . . ,ap} = R

m?

Example: (m = 3) Let e1 =





1
0
0



, e2 =





0
1
0



, e3 =





0
0
1



.

Then Span {e1, e2, e3} = R
3, because





x
y
z



 = x





1
0
0



+ y





0
1
0



+ z





0
0
1



 .

But for a more complicated set of vectors, the weights will be more complicated
functions of x, y, z. So we want a better way to answer this question.
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Theorem 4: Existence of solutions to linear systems: For an m× n matrix
A, the following statements are logically equivalent (i.e. for any particular matrix
A, they are all true or all false):
a. For each b in R

m, the equation Ax = b has a solution.
b. Each b in R

m is a linear combination of the columns of A.
c. The columns of A span R

m (i.e. Span {a1,a2, . . . ,ap} = R
m).

d. A has a pivot position in every row.

Proof: (outline): By the previous discussion, (a), (b) and (c) are logically equivalent.
So, to finish the proof, we only need to show that (a) and (d) are logically equivalent, i.e.
we need to show that,
• if (d) is true, then (a) is true;
• if (d) is false, then (a) is false. (This is the same as “if (a) is true, then (d) is true”.)

You may view d) as a computation (reduction to echelon form) to check for a), b) or c).

Warning: the theorem says nothing about the uniqueness of the solution.
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Proof: (continued)

a. For each b in R
m, the equation Ax = b has a solution.

d. A has a pivot position in every row.

Suppose (d) is true. Then, for every b in R
m, the augmented matrix [A|b]

row-reduces to [rref(A)|d] for some d in R
m. This does not have a row of the

form [0 . . . 0|�], so, by the Existence of Solutions Theorem (Week 1 p27),
Ax = b is consistent. So (a) is true.

Suppose (d) is false. We want to find a counterexample to (a): i.e. we want to
find a vector b in R

m such that Ax = b has no solution.

(This last part of the proof, written on the next page, is hard, and is not
something you are expected to think of by yourself. But you should try to
understand the part of the proof on this page.)
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Proof: (continued) Suppose (d) is false. We want to find a counterexample to
(a): i.e. we want to find a vector b in R

m such that Ax = b has no solution.

a. For each b in R
m, the equation Ax = b has a solution.

d. A has a pivot position in every row.

A does not have a pivot position in every row, so the last row of rref(A) is [0 . . . 0].

Let d =








∗
...
∗
1







.

Now we apply the row operations in reverse to get an equivalent
linear system [A|b] that is inconsistent.

Then the linear system with augmented matrix [rref(A)|d] is
inconsistent.

Example:
[

1 −3 1

−2 6 −1

]
R2→R2+2R1−−−−−−−⇀↽−−−−−−−
R2→R2−2R1

[
1 −3 1

0 0 1

]
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Theorem 4: Existence of solutions to linear systems: For an m× n matrix
A, the following statements are logically equivalent (i.e. for any particular matrix
A, they are all true or all false):
a. For each b in R

m, the equation Ax = b has a solution.
b. Each b in R

m is a linear combination of the columns of A.
c. The columns of A span R

m (i.e. Span {a1,a2, . . . ,ap} = R
m).

d. A has a pivot position in every row.

We will add more statements to this theorem throughout the course.

Observe that A has at most one pivot position per column (condition 5 of a
reduced echelon form, or think about how we perform row-reduction). So if A has
more rows than columns (a “tall” matrix), then A cannot have a pivot position in
every row, so the statements above are all false.
In particular, a set of fewer than m vectors cannot span R

m.

Warning/Exercise: It is not true that any set of m or more vectors span R
m:

can you think of an example?



Remember that the solutions to Ax = b are the weights for writing b as a
linear combination of the columns of A.

Ax = b ←→ b = x1a1 + x2a2 + · · ·+ xpap.

The “linear combination of columns” viewpoint gives us a picture way to
understand existence of solutions (p20).

Here is a picture about uniqueness of solutions: what does it mean for the
weights xi to be non-unique.

EXAMPLE: a1 =

[
1
0

]
, a2 =

[
0
1

]
, a3 =

[
1
1

]
, b =

[
2
2

]
.

Informally, the non-uniqueness of weights happens because we can use our
given vectors to “walk in a circle back to 0” - this is the idea of linear dependence
(week 3).

−2 −1 1 2
x1

−2

−1

1

2

x2

.b 
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§1.5: Solution Sets of Linear Systems
• use vector notation to give geometric descriptions of solution sets

(in parametric form: {p+ sv + tw + . . . |s, t, · · · ∈ R}).
• to compare the solution sets of Ax = b and of Ax = 0.

Definition: A linear system is homogeneous if the right hand side is the zero
vector, i.e.

Ax = 0.

When we row-reduce [A|0], the right hand side stays 0, so the reduced echelon
form does not have a row of the form [0 . . . 0|�].
So a homogeneous system is always consistent.

In fact, x = 0 is always a solution, because A0 = 0. The solution x = 0 called
the trivial solution.

A non-trivial solution x is a solution where at least one xi is non-zero.

Goals:



If there are non-trivial solutions, what does the solution set look like?

EXAMPLE:

2x1 + 4x2 − 6x3 = 0

4x1 + 8x2 − 10x3 = 0

Corresponding augmented matrix: 2 4 −6 0

4 8 −10 0


Corresponding reduced echelon form: 1 2 0 0

0 0 1 0


Solution set:

Geometric representation:



EXAMPLE: (same left hand side as before)

2x1 + 4x2 − 6x3 = 0

4x1 + 8x2 − 10x3 = 4

Corresponding augmented matrix: 2 4 −6 0

4 8 −10 4


Corresponding reduced echelon form: 1 2 0 6

0 0 1 2


Solution set:

Geometric representation:



EXAMPLE: Compare the solution sets of:

x1 − 2x2 − 2x3 = 0 x1 − 2x2 − 2x3 = 3

Corresponding augmented matrices:[
1 −2 −2 0

] [
1 −2 −2 3

]
These are already in reduced echelon form.
Solution sets:

Geometric representation:

1
2

x2
11 22 33 44 55

xx11

11

22

33

xx33

Parallel Solution Sets of Ax = 0 and Ax = b
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In our first example:
• The solution set of Ax = 0 is a line through the origin parallel to v.
• The solution set of Ax = b is a line through p parallel to v.

In our second example:
• The solution set of Ax = 0 is a plane through the origin parallel to u and v.
• The solution set of Ax = b is a plane through p parallel to u and v.

In both cases: to get the solution set of Ax = b, start with the solution set of
Ax = 0 and translate it by p.

In general:

Theorem 6: Solutions and homogeneous equations: Suppose p is a solution
to Ax = b. Then the solution set to Ax = b is the set of all vectors of the form
w = p+ vh, where vh is any solution of the homogeneous equation Ax = 0.

p is called a particular solution (one solution out of many).

HKBU Math 2207 Linear Algebra Semester 2 2020, Week 2, Page 33 of 37

Theorem 6: Solutions and homogeneous equations: Suppose p is a solution
to Ax = b. Then the solution set to Ax = b is the set of all vectors of the form
w = p+ vh, where vh is any solution of the homogeneous equation Ax = 0.
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Theorem 6: Solutions and homogeneous equations: Suppose p is a solution
to Ax = b. Then the solution set to Ax = b is the set of all vectors of the form
w = p+ vh, where vh is any solution of the homogeneous equation Ax = 0.

Proof: (outline)
We show that w = p+ vh is a solution:

A(p+ vh)

=Ap+Avh

=b+ 0

=b.

We also need to show that all solutions are of the form w = p+ vh - see q25 in
Section 1.5 of the textbook.
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Two typical applications of this theorem:

1. If you write the solutions to Ax = b in parametric form, then the part with free
variables is the solution to Ax = 0, e.g. on week1 p26, we found that the

solutions to





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2



x =





−5
9
5



 is









−24
−7
0
0
4









+ s









2
2
1
0
0









+ t









−3
−2
0
1
0









2. If you already have the solutions to Ax = 0 and you need to solve Ax = b, then
you don’t need to row-reduce again: simply find one particular solution (e.g. by
guessing) and then add it to the solution set to Ax = 0 (example on next page).

particular solution

solutions to





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2



x = 0
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How this theorem is useful: a shortcut to Q1b on ex. sheet #5:

Example: Let A =





| | | |
a1 a2 a3 a4
| | | |



 =

[
1 3 0 −4
2 6 0 −8

]

.

In Q1a, you found that the solution set to Ax = 0 is







−3
1
0
0






r +







0
0
1
0






s+







4
0
0
1






t, where

r, s, t can take any value.

In Q1b, you want to solve Ax =

[
3
6

]

. Now

[
3
6

]

= 0a1 + 1a2 + 0a3 + 0a4 = A







0
1
0
0






, so







0
1
0
0







is a particular solution. So the solution set is







0
1
0
0






+







−3
1
0
0






r +







0
0
1
0






s+







4
0
0
1






t,

where r, s, t can take any value.
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Notice that this solution looks different from the solution obtained from row-reduction:

rref

([
1 3 0 −4 3
2 6 0 −8 6

])

=

[
1 3 0 −4 3
0 0 0 0 0

]

, which gives a different particular solution







3
0
0
0






.

But the solution sets are the same:






3
0
0
0






+







−3
1
0
0






r +







0
0
1
0






s+







4
0
0
1






t =







3
0
0
0






+







−3
1
0
0






+







−3
1
0
0






(r − 1) +







0
0
1
0






s+







4
0
0
1






t

=







0
1
0
0






+







−3
1
0
0






(r − 1) +







0
0
1
0






s+







4
0
0
1






t,

and r, s, t taking any value is equivalent to r − 1, s, t taking any value.
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In this picture, the plane is Span {u,v,w} = Span {u,v}, so we do not
need to include w to describe this plane.
We can think that w is “too similar” to u and v - and linear dependence is
the way to make this idea precise.

§1.7: Linear Independence
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Definition: A set of vectors {v1, . . . ,vp} is linearly independent if the only
solution to the vector equation

x1v1 + · · ·+ xpvp = 0

is the trivial solution (x1 = · · · = xp = 0).

The opposite of linearly independent is linearly dependent:

Definition: A set of vectors {v1, . . . ,vp} is linearly dependent if there are
weights c1, . . . , cp, not all zero, such that

c1v1 + · · ·+ cpvp = 0.

The equation c1v1 + · · ·+ cpvp = 0 is a linear dependence relation.
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Definition: A set of vectors {v1, . . . ,vp} is linearly dependent if there are
weights c1, . . . , cp, not all zero, such that

c1v1 + · · ·+ cpvp = 0.

The equation c1v1 + · · ·+ cpvp = 0 is a linear dependence relation.

A picture of a linear dependence relation: “ you can use the given directions to
move in a circle”.

v

u w

u

2v

−w

u+ 2v −w = 0

0
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x1v1 + · · ·+ xpvp = 0

The only solution is x1 = · · · = xp = 0
→ linearly independent

There is a solution with some xi 6= 0
→ linearly dependent

Example:

{[

2
1

]

,

[

4
2

]}

is linearly

dependent because

2

[

2
1

]

+ (−1)

[

4
2

]

=

[

0
0

]

.

Example:

{[

2
1

]

,

[

3
0

]}

is linearly

independent because

x1

[

2
1

]

+ x2

[

3
0

]

=

[

0
0

]

=⇒
2x1 + 3x2 = 0
x1 = 0

[

2
1

]

[

4
2

]=⇒ x1 = 0, x2 = 0.
[

2
1

]

[

3
0

]
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x1v1 + · · ·+ xpvp = 0

The only solution is x1 = · · · = xp = 0
(i.e. unique solution)
→ linearly independent

There is a solution with some xi 6= 0
(i.e. infinitely many solutions)
→ linearly dependent

Informally: v1, . . . ,vp are in “similar
directions”

Informally: v1, . . . ,vp are in “totally
different directions”; there is “no
relationship” between v1, . . .vp.
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Some easy cases:

• Sets containing the zero vector {0,v2, . . . ,vp}: then the linear dependence
equation is

x10+ x2v2 + · · ·+ xpvp = 0.

• Sets containing one vector {v}: then the linear dependence equation is

xv = 0 i.e.







xv1
...

xvn






=







0
...
0






.

A non-trivial solution is

(1)0+ (0)v2 + · · ·+ (0)vp = 0,

so such a set is linearly dependent (it doesn’t matter what v2, . . . ,vp are).

If some vi 6= 0, then x = 0 is the only solution. So {v} is linearly independent if
v 6= 0.
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• Sets containing two vectors {u,v}: then the linear dependence equation is

x1u+ x2v = 0.

Using the same argument as in the example on p4, we can show that, if v = cu

for any c, then u and v are linearly dependent:

v = cu means cu+ (−1)v = 0.

so (-1) is a nonzero weight. The same argument applies if u = dv for any d.
Is this the only way in which two vectors can be linearly dependent?

Some easy cases:

The answer is yes: Two vectors are linearly dependent if and only if one vector
is a multiple of the other, i.e. they have the same or opposite direction.

Here’s the proof for the “only if” part: suppose x1u+ x2v = 0 and x1, x2 are
not both zero.

If x1 6= 0, then we can divide by it: u =
−x2

x1

v.

Similarly, if x2 6= 0, then v =
−x1

x2

u.
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The correct generalisation of the two-vector case is the following: a set of vectors is
linearly dependent if and only if one of the vectors is a linear combination of the
others. (More specifically: if the weight xi in the linear dependency relation
x1v1 + · · ·+ xpvp = 0 is non-zero, then vi is a linear combination of the other vs,
by the same argument as in the case of two vectors.)

u

2v

−w

0

u+ 2v −w = 0

When there are more vectors, it is hard to tell quickly if a set is linearly independent
or dependent.

As shown in this example from p3, three vectors can be linearly dependent without
any of them being a multiple of any other vector.



EXAMPLE Let v1 =

1

3

5

, v2 =

2

5

9

, v3 =

−3

9

3

.

a. Determine if v1,v2,v3 is linearly independent.
b. If possible, find a linear dependence relation among v1,v2,v3.

Solution: (a)

Augmented matrix:

1 2 −3 0

3 5 9 0

5 9 3 0

1 2 −3 0

   
(b) Reduced echelon form:

1 0 33 0

0 1 −18 0

0 0 0 0

Let x3 = _____ (any nonzero number). Then x1 = _____ and x2 = _____.

____

1

3

5

+ ____

2

5

9

+ ____

−3

9

3

=

0

0

0

or

____v1 + ____v2 + ____v3 = 0

(one possible linear dependence relation)

row reduces to| |

|

0 1 −18 0

How to determine if v1,v2,...,vp  is linearly independent:

v1,v2,v3  is linearly independent if _____________________________________

x3 is a free variable

⇒_______________________________________________⇒ there are nontrivial solutions.

(Alternative explanation:

⇒_______________________________________________⇒ there are nontrivial solutions.)

v1,v2,v3 is ___________________
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Theorem: Uniqueness of solutions for linear systems: For a matrix A, the
following are equivalent:
a. Ax = 0 has no non-trivial solution (i.e. x = 0 is the only solution).
b. If Ax = b is consistent, then it has a unique solution.
c. The columns of A are linearly independent.
d. A has a pivot position in every column (i.e. all variables are basic).

In particular: the row reduction algorithm produces at most one pivot position in
each row of A. So, if A has more columns than rows (a “fat” matrix), then A

cannot have a pivot position in every column.

So a set of more than n vectors in R
n is always linearly dependent.

Exercise: Combine this with the Theorem of Existence of Solutions (Week 2 p23)
to show that a set of n linearly independent vectors span R

n.

A non-trivial solution to Ax = 0 is a linear dependence relation between the
columns of A: Ax = 0 means x1a1 + · · ·+ xnan = 0.
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Theorem: Uniqueness of solutions for linear systems: For a matrix A, the
following are equivalent:
a. Ax = 0 has no non-trivial solution (i.e. x = 0 is the only solution).
b. If Ax = b is consistent, then it has a unique solution.
c. The columns of A are linearly independent.
d. A has a pivot position in every column (i.e. all variables are basic).

Study tip: now that we’re working with different types of mathematical objects
(matrices, vectors, equations, numbers), you should be careful which properties apply
to which objects: e.g. linear independence applies to a set of vectors, not to a matrix

(at least not until Chapter 4). Do not say “





1 2 −3
3 5 9
5 9 3



 is linearly dependent” when

you mean “











1
3
5



 ,





2
5
9



 ,





−3
9
3











are linearly dependent”.

one object with 9 numbers

three objects each with 3 numbersthree objects each with 3 numbers
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Another way to say the definition of linear independence:

if x1v1 + · · ·+ xpvp = 0, then x1 = · · · = xp = 0.

A WRONG definition of linear independence:

x1v1 + · · ·+ xpvp = 0, where x1 = · · · = xp = 0.

The wrong definition is saying, if x1 = · · · = xp = 0, then x1v1 + · · ·+ xpvp = 0.
This is always true, no matter what v1, . . . ,vp are, so it doesn’t give any
information about the vectors.

The words between the formulas are important, they explain how the formulas are
related to each other.

i.e. if we choose x1 = · · · = xp = 0

Tip: in proofs and in computations, linear dependence and independence are handled
differently (see p4).
dependence: find ONE nonzero solution to x1v1 + · · ·+ xpvp = 0.

independence: SOLVE x1v1 + · · ·+ xpvp = 0 and show there are no nonzero solutions.



A second exercise in writing proofs.

EXAMPLE: Suppose {u,v} is linearly independent. Show that {u,u+ v} is linearly independent.

STRATEGY 1: direct proof
Step 1: Write out the conclusion as formulas:

Step 2: on a separate piece of paper, use de�nitions to write out the given information as formulas. Be
careful to use di�erent letters in di�erent formulas.

Step 3: if the required conclusion (from Step 1) is about �the only solutions�: solve the required equations
using the information in Step 2.

STRATEGY 2: proof by contradiction / contrapositive:

1
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Partial summary of linear dependence:

The definition: x1v1 + · · ·+ xpvp = 0 has a non-trivial solution (not all xi are
zero); equivalently, it has infinitely many solutions.

Equivalently: one of the vectors is a linear combination of the others (see p8, also
Theorem 7 in textbook). But it might not be the case that every vector in the set
is a linear combination of the others (see ex. sheet #5 q2b).

Computation: rref









| | |
v1 . . . vp

| | |







 has at least one free variable.

Informal idea: the vectors are in “similar directions”
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Partial summary of linear dependence (continued):

Easy examples:
• Sets containing the zero vector;
• Sets containing “too many” vectors (more than n vectors in R

n);

• Multiples of vectors: e.g.

{[

2
1

]

,

[

4
2

]}

(this is the only possibility if the set

has two vectors);

• Other examples: e.g.











1
0
0



 ,





0
1
0



 ,





1
1
0











. Make your own examples!

Adding vectors to a linearly dependent set still makes a linearly dependent set (see
ex. sheet #5 q2c).
Equivalent: removing vectors from a linearly independent set still makes a linearly
independent set (because P implies Q is equivalent to (not Q) implies (not P) -
this is the contrapositive).
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Study tips:
• Linear independence will appear again in many topics throughout the class, so

I suggest you add to this summary throughout the semester, so you can see
the connections between linear independence and the other topics.

• Topic summaries like this one is useful for exam revision, but even more useful
is making these summaries yourself. I encourage you to use my summary as a
template for your own summaries of the other topics.

• Examples can be useful for solving true/false questions: if a true/false
question is about a linear dependent set, try it on the examples on the
previous page. Try to make a counterexample, and if you can’t, it will give you
some idea of why the statement is true.
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§1.8-1.9: Linear Transformations
This week’s goal is to think of the equation Ax = b in terms of the
“multiplication by A” function: its input is x and its output is b.

[

8 3 −4
5 1 2

]





1
2
1



 =

[

10
9

]

Think of this as:





1
2
1





[

10
9

]

multiply by A

[

4
7

]

multiply by A





1
0
1





22 = 4 Think of this as: 2 4
squaring

[

8 3 −4
5 1 2

]





1
0
1



 =

[

4
7

]

32 = 9 3 9

Primary One: Primary Four:

Last week: Today:
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Goal: think of the equation Ax = b in terms of the “multiplication by A”
function: its input is x and its output is b.

In this class, we are interested in functions that are linear (see p6 for the definition).
Key skills:
i Determine whether a function is linear (p7-10);
(This involves the important mathematical skill of “axiom checking”, which also
appears in other classes.)

ii Find the standard matrix of a linear function (p13-14);
iii Describe existence and uniqueness of solutions in terms of linear functions

(p18-28).
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Definition: A function f from R
n to R

m is a rule that assigns to each vector x
in R

n a vector f(x) in R
m. We write f : Rn → R

m.

R
n is the domain of f .

R
m is the codomain of f .

f(x) is the image of x under f .

The range is the set of all
images. It is a subset of the
codomain.

Example: f : R → R given by f(x) = x2.
Its domain = codomain = R, its range = {y ∈ R | y ≥ 0}.
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Examples:

f : R2 → R
3, defined by f

([

x1

x2

])

=





x3

2

2x1 + x2

0



.

h : R3 → R
2, given by the matrix transformation h(x) =

[

8 3 −4
5 1 2

]

x.

The range of f is the plane z = 0 (it is obvious that the range must be a
subset of the plane z = 0, and with a bit of work (see p20), we can show
that all points in R

3 with z = 0 is the image of some point in R
2 under f).
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Geometric Examples:

g : R2 → R
2, given by reflection through the x2-axis.

g

([

x1

x2

])

=

[

−x1

x2

]

.

x g(x)
g

S : R2 → R
2, given by dilation by a factor of 3.

S(x) = 3x.

x

S(x)

S

x1 x1

x1

x1

x2 x2

x2

x2
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In this class, we will concentrate on functions that are linear. (For historical
reasons, people like to say “linear transformation” instead of “linear function”.)

Definition: A function T : Rn → R
m is a linear transformation if:

1. T (u+ v) = T (u) + T (v) for all u,v in the domain of T ;
2. T (cu) = cT (u) for all scalars c and for all u in the domain of T .

For your intuition: the name “linear” is because these functions preserve lines:
A line through the point p in the direction v is the set {p+ sv|s ∈ R}.
If T is linear, then the image of this set is

T (p+ sv) = T (p) + T (sv) = T (p) + sT (v),

the line through the point T (p) in the direction T (v).
(If T (v) = 0, then the image is just the point T (p).)

Fact: A linear transformation T must satisfy T (0) = 0.

Proof: (sketch) Put c = 0 in condition 2.

1 2
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Take u =

[

1
1

]

and c = 2:

f

(

2

[

1
1

])

= f

([

2
2

])

=





8
6
0



.

2f

([

1
1

])

= 2





1
3
0



 =





2
6
0



 6=





8
6
0



.

Definition: A function T : Rn → R
m is a linear transformation if:

1. T (u+ v) = T (u) + T (v) for all u,v in the domain of T ;
2. T (cu) = cT (u) for all scalars c and all u, in the domain of T .

Example: Is f

([

x1

x2

])

=





x3

2

2x1 + x2

0



 is not linear:

So condition 2 is false for f .

Exercise: find a u and a v to
show that condition 1 is also false.



DEFINITION: A function T : Rn → Rm is a linear transformation if:

1. T (u+ v) = T (u) + T (v) for all u,v in the domain of T ;

2. T (cu) = cT (u) for all scalars c and all u, in the domain of T .

EXAMPLE: g

x1

x2

 =

−x1

x2

 (reflection through the x2-axis) is linear:

1.

add the input vectors

substitute u+ v for x in the formula for g

separate the u terms and v terms

check that this is g(u) + g(v)

2.

multiply the input vector

substitute cu for x in the formula for g

factor out c

g

u1

u2

+

v1
v2

 = g

 


=

=

= g

u1

u2

+ g

v1
v2



g

c

u1

u2

 = g

 


=

=

= cg

u1

u2

check that the remaining part is g(u)
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Definition: A function T : Rn → R
m is a linear transformation if:

1. T (u+ v) = T (u) + T (v) for all u,v in the domain of T ;
2. T (cu) = cT (u) for all scalars c and all u, in the domain of T .

Example: S(x) = 3x (dilation by a factor of 3) is linear:

S(cu+ dv) = 3(cu+ dv) = 3cu+ 3dv = cS(u) + dS(v).

Important Example: All matrix transformations T (x) = Ax are linear:

T (cu+ dv) = A(cu+ dv) = A(cu) +A(dv) = cAu+ dAv = cT (u) + dT (v).

For simple functions, we can combine the two conditions at the same time, and
check just one statement: T (cu+ dv) = cT (u) + dT (v), for all scalars c, d and
all vectors u,v. (Condition 1 is the case c = d = 1, condition 2 is the case
d = 0. Exercise: show that if T satisfies conditions 1 and 2, then T satisfies the
combined condition.)
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Notice from the previous examples:
To show that a function is linear, check both conditions for general u,v, c (i.e.
use variables).
To show that a function is not linear, show that one of the conditions is not
satisfied for a particular numerical values of u and v (for 1) or of c and u (for 2).

If you don’t know whether a function is linear, work out the formulas for T (cu)
and cT (u) separately (for general variables c and u) and see if they are the
same. If they’re different, this should help you find numerical values for your
counterexample (and similarly for T (u+ v) and T (u) + T (v)).

Some people find it easier to work with condition 2 first, before condition 1,
because there are fewer vector variables.

Definition: A function T : Rn → R
m is a linear transformation if:

1. T (u+ v) = T (u) + T (v) for all u,v in the domain of T ;
2. T (cu) = cT (u) for all scalars c and all u, in the domain of T .



EXAMPLE: Let e1 =

1

0
, e2 =

0

1

1

0

2

0

1

1

. Suppose T : R2 
→  R3 is a linear transformation with 

3

2
.

Solution:

Te1  = and Te2   =              .

1 2 3
x1

1

2
x2

0
1

2
3

x1

0
1

2 x2

0

2

4

6

8

x3

0
1

2
3

x1

0
1

2 x2

T3e1 + 2e2 = 3Te1 + 2Te2

Find the image of
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In general:

Write ei for the vector with 1 in row i and 0 in all other rows.
(So ei means a different thing depending on which R

n we are working in.)

For example, in R
3, we have e1 =





1
0
0



, e2 =





0
1
0



, e3 =





0
0
1



.

{e1, . . . , en} span R
n, and x =







x1

...
xn






= x1e1 + · · ·+ xnen.

So, if T : Rn → R
m is a linear transformation, then

T (x) = T (x1e1+· · ·+xnen) = x1T (e1)+· · ·+xnT (en) =





| | |
T (e1) . . . T (en)

| | |











x1

...
xn






.
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Theorem 10: The matrix of a linear transformation: Every linear transformation
T : Rn → R

m can be written as a matrix transformation: T (x) = Ax where A is the
standard matrix for T , the m× n matrix given by

A =





| | |
T (e1) . . . T (en)

| | |



 .

We can think of the standard matrix as a compact way of storing the information
about T .

Other notations for the standard matrix for T (see §5.4, week 9) are [T ] and [T ]E .

Example: S : R2 → R
2, given by dilation by a factor of 3, S(x) = 3x.

S(e1) = S

([

1
0

])

= 3

([

1
0

])

=

[

3
0

]

, S(e2) = S

([

0
1

])

= 3

([

0
1

])

=

[

0
3

]

.

So the standard matrix of S is

[

3 0
0 3

]

, i.e. S(x) =

[

3 0
0 3

]

x.
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Example: g

([

x1

x2

])

=

[

−x1

x2

]

(reflection through the x2-axis):

The standard matrix of g is





| |
g(e1) g(e2)
| |



 =

[

−1 0
0 1

]

.

We can check that this gives the correct formula for g:

[

−1 0
0 1

] [

x1

x2

]

=

[

−x1

x2

]

.

g(e1) =



Vertical Contraction and Expansion

Image of the Standard
Unit Square Matrix




 

1
0

0
k

x1

x2




 

1
0




 

0
k

x1

x2

k > 10 < k < 1




 





Chapter 1 Lay, Linear Algebra and Its Applications, Second Edition—Update
Copyright c© 2000 by Addison Wesley Longman. All rights reserved.

A1.8.T2

Further examples of geometric linear transformations:

USTASCE
Chapter 1 Lay, Linear Algebra and Its Applications, Second Edition—Update
Copyright c 
2000 by Addison Wesley Longman. All rights reserved.
A1.8.T2



Projection onto thex1-axis

Image of the Standard
Unit Square Matrix

 


 

0 
0

 


 

1 
0

x1

x2




Chapter 1 Lay, Linear Algebra and Its Applications, Second Edition—Update
Copyright c© 2000 by Addison Wesley Longman. All rights reserved.

A1.8.T4

USTASCE
Chapter 1 Lay, Linear Algebra and Its Applications, Second Edition—Update
Copyright c 
2000 by Addison Wesley Longman. All rights reserved.
A1.8.T4



(– sin ϕ, cos ϕ)

(cos ϕ, sin ϕ)

(1, 0)

(0, 1)

ϕ

ϕ x1

x2

Chapter 1 Lay, Linear Algebra and Its Applications, Second Edition—Update
Copyright c© 2000 by Addison Wesley Longman. All rights reserved.

A1.8.01

EXAMPLE: T : R2 → R2 given by rotation counterclockwise about the
origin through an angle ϕ:

USTASCE
Chapter 1 Lay, Linear Algebra and Its Applications, Second Edition—Update
Copyright c 
2000 by Addison Wesley Longman. All rights reserved.
A1.8.01
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Definition: A function f : Rn → R
m is onto (surjective) if each y in R

m is the
image of at least one x in R

n.

Other ways of saying this:
• The equation f(x) = y has a solution for every y in R

m,
• The range is all of the codomain R

m.

Now we rephrase our existence and uniqueness questions in terms of functions.

R
n

R
m

range
f

codomain

R
n

R
m

f

f is not onto, because there are (blue)
points in the codomain outside the range

f is onto
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Definition: A function f : Rn → R
m is one-to-one (injective) if each y in R

m is
the image of at most one x in R

n.

Other ways of saying this:
• The equation f(x) = y has no solutions or a unique solution,
• If f(x1) = f(x2), then x1 = x2,
• ??? (A comparison of sets, but it only works for linear transformations, see p23).

Now we rephrase our existence and uniqueness questions in terms of functions.
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f : Rn → R
m is onto (surjective) if f(x) = y has one or more solutions, for

each y in R
m.

f : Rn → R
m is one-to-one (injective) if f(x) = y has zero or one solutions, for

each y in R
m.

Example: f : R2 → R
3, defined by f

([

x1

x2

])

=





x3

2

2x1 + x2

0



.

f is not onto, because f(x) =





0
0
1



 does not have a solution.

f is one-to-one:
if y3 6= 0, then f(x) =





y1
y2
y3



 does not have a solution,

if y3 = 0, then the unique solution to f(x) =





y1
y2
0



 is x2 = 3
√
y1,

x1 = 1

2
(y2 − x2) =

1

2
(y2 − 3

√
y1).
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There is an easier way to check if a linear transformation is one-to-one:

Definition: The kernel of a linear transformation T : Rn → R
m is the set of

solutions to T (x) = 0.

Or, in set notation: kerT = {x ∈ R
n | T (x) = 0}.

Example: Let T be projection onto the x1-axis, whose

standard matrix is

[

1 0
0 0

]

(i.e. T (x) =

[

1 0
0 0

]

x).

The kernel of T is the solution set of T (x) = 0, i.e.

the solution set of

[

1 0 0
0 0 0

]

. Using the usual

algorithm, this solution set is

{[

0
1

]

t

∣

∣

∣

∣

t ∈ R

}

, which is

the x2-axis.
It is also clear from the geometric description of projection that the x2-axis is
mapped to the origin.

HKBU Math 2207 Linear Algebra Semester 2 2020, Week 4, Page 22 of 28

There is an easier way to check if a linear transformation is one-to-one:

Recall: given T : Rn → R
m a linear transformation, kerT = {x ∈ R

n | T (x) = 0}.

Example: Let T be projection onto the x1-axis.

The previous page showed that kerT is the x2-axis.

Notice that T

([

2
2

])

= T

([

2
1

])

=

[

2
0

]

, and

[

2
2

]

−

[

2
1

]

=

[

0
1

]

, which is in the kernel.

Fact: If T (v1) = T (v2), then v1 − v2 is in the kernel of T .

Proof of Fact: (We need to show v1 − v2 ∈ ker(T ), i.e. T (v1 − v2) = 0.)

T (v1 − v2) = T (v1)− T (v2) = 0, so v1 − v2 ∈ kerT .

v1 =

[

2
2

]

v2 =

[

2
1

]

∵ T is linear

v1 − v2

Tip: in any proof about linear transformations, use
T (c1v1 + · · ·+ cpvp) = c1T (v1) + · · ·+ cpT (vp)
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There is an easier way to check if a linear transformation is one-to-one:

Theorem: A linear transformation is one-to-one if and only if its kernel is {0}.

Fact: If T (v1) = T (v2), then v1 − v2 is in the kernel of T .

Recall: given T : Rn → R
m a linear transformation, kerT = {x ∈ R

n | T (x) = 0}.

R
n

R
m

kerT = {0}
T is not one-to-one, because
there are nonzero (red) points in
the kernel, which T sends to 0.

T is one-to-one

R
n

R
m

T

00kerT 00

T
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There is an easier way to check if a linear transformation is one-to-one:

Theorem: A linear transformation is one-to-one if and only if its kernel is {0}.

Fact: If T (v1) = T (v2), then v1 − v2 is in the kernel of T .

Recall: given T : Rn → R
m a linear transformation, kerT = {x ∈ R

n | T (x) = 0}.

Warning: the theorem is only for linear transformations. For other functions, the
solution sets of f(x) = y and f(x) = 0 are not related.

Proof:
Suppose T is one-to-one. Taking y = 0 in the definition of one-to-one shows T (x) = 0

has at most one solution. Since 0 is a solution (because T is linear), it must be the only
one. So its kernel is {0}.
Suppose the kernel of T is {0}. We need to show T is one-to-one, (i.e. if
T (x1) = T (x2), then x1 = x2.)
If T (x1) = T (x2), then by the Fact, x1−x2 ∈ kerT = {0}, so x1−x2 = 0, so x1 = x2.
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Theorem: Uniqueness of solutions to linear systems: For a matrix A, the
following are equivalent:
a. Ax = 0 has no non-trivial solution (i.e. x = 0 is the only solution).
b. If Ax = b is consistent, then it has a unique solution.
c. The columns of A are linearly independent.
d. A has a pivot position in every column (i.e. all variables are basic).
e. The linear transformation x 7→ Ax is one-to-one.
f. The kernel of the linear transformation x 7→ Ax is {0}.

Notice that e. is in terms of linear transformations, b. is in terms of matrices and
linear equations, and they are the same thing.
f. is in terms of linear transformations, a. is in terms of matrices and linear
equations, and they are the same thing.

Theorem: A linear transformation is one-to-one if and only if its kernel is {0}.
So a matrix transformation x 7→ Ax is one-to-one if and only if the set of
solutions to Ax = 0 is {0}. This is equivalent to many other things:
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Now let’s think about onto and existence of solutions.

Recall that the range of a linear transformation T : Rn → R
m is the set of images,

i.e. rangeT = {y ∈ R
m|y = T (x) for some x ∈ R

n} = {T (x)|x ∈ R
n}.

So, if T (x) = Ax (i.e. A is the standard matrix of T ), then

It is clear from the geometric description of projection that the set of images is the x1-axis.

rangeT = {y ∈ R
m|y = Ax for some x ∈ R

n}
= {b ∈ R

m|b = Ax has a solution}
= {b ∈ R

m|b = x1a1 + · · ·+ xnan for some xi}
= span of the columns of A

Example: Let T be projection onto the x1-axis, whose

standard matrix is A =

[

1 0
0 0

]

.

Its range is the span of the columns of

[

1 0
0 0

]

, i.e.

Span

{[

1
0

]

,

[

0
0

]}

, which is the x1-axis.

where A=





| | |
a1 . . . an
| | |



.
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Theorem 4: Existence of solutions to linear systems: For an m× n matrix
A, the following statements are logically equivalent (i.e. for any particular matrix
A, they are all true or all false):
a. For each b in R

m, the equation Ax = b has a solution.
b. Each b in R

m is a linear combination of the columns of A.
c. The columns of A span R

m.
d. A has a pivot position in every row.
e. The linear transformation x 7→ Ax is onto.
f. The range of the linear transformation x 7→ Ax is Rm.

The range of the linear transformation x 7→ Ax is the set of b for which Ax = b

has a solution.
And a linear transformation R

n → R
m is onto if and only if its range is all of Rm.

Putting these together: x 7→ Ax is onto if and only if Ax = b is always
consistent, and this is equivalent to many things:
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Remember from weeks 1-3 that existence and uniqueness are separate, unrelated
concepts. Similarly, onto and one-to-one are unrelated:
Exercise 1: think of a linear transformation that is onto but not one-to-one, or
both onto and one-to-one, or etc.

Exercise 2: consider the other linear transformations in this week’s notes. Are they
onto? Are they one-to-one?

The range and the kernel on one picture:

R
n

T

00kerT

R
m

rangeT

codomain

domain

rangeT = {T (x)|x ∈ R
n}

defined by a form
kerT = {x ∈ R

n | T (x) = 0}
defined by a condition
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§2.1: Matrix Operations
We have several ways to combine functions to make new functions:
• Addition: if f, g have the same domains and codomains, then we can set

(f + g)x = f(x) + g(x),
• Composition: if the codomain of f is the domain of g, then we can set
(g ◦ f)x = g(f(x)),

• Inverse (§2.2): if f is one-to-one and onto, then we can set f−1(y) to be
the unique solution to f(x) = y.

It turns out that the sum, composition and inverse of linear transformations are
also linear (exercise: prove it!), and we can ask how the standard matrix of the
new function is related to the standard matrices of the old functions.
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The (i, j)-entry of a matrix A is the entry in row i,
column j, and is written aij or (A)ij .

e.g.







a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43







Notation:

The diagonal entries of A are the entries a11, a22, . . . .

A diagonal matrix is a square matrix whose nondiagonal
entries are 0.

e.g.





2 0 0
0 0 0
0 0 1





The identity matrix In is the n× n matrix whose diagonal
entries are 1 and whose nondiagonal entries are 0.
It is the standard matrix for the identity transformation
T : Rn → R

n given by T (x) = x.

e.g. I3 =





1 0 0
0 1 0
0 0 1





A square matrix has the same number of rows as
columns. The associated linear transformation has the
same domain and codomain.
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If A,B are the standard matrices for some linear transformations S, T : Rn → R
m,

then (S + T )x = S(x) + T (x) is a linear transformation. What is its standard matrix
A+B?

Proceed column by column:
=First column of the standard matrix of S + T

= (S + T )(e1)
= S(e1) + T (e1)
= first column of A + first column of B.
i.e. (i, 1)-entry of A+B=ai1 + bi1.

The same is true of all the other columns, so (A+B)ij=aij + bij .

Addition:

Example: A =

[
4 0 5

−1 3 2

]

, B =

[
1 1 1
3 5 7

]

, A+B =

[
5 1 6
2 8 9

]

.

definition of standard matrix of S + T

definition of S + T

definition of standard matrix of S and of T
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If A is the standard matrix for a linear transformation S : Rn → R
m, and c is a

scalar, then (cS)x = c(Sx) is a linear transformation. What is its standard
matrix cA?

Proceed column by column:
=First column of the standard matrix of cS
= (cS)(e1)
= c(Se1)
= first column of A multiplied by c.
i.e. (i, 1)-entry of cA=cai1.

The same is true of all the other columns, so (cA)ij = caij .

Scalar multiplication:

Example: A =

[
4 0 5

−1 3 2

]

, c = −3, cA =

[
−12 0 −15

3 −9 −6

]

.

definition of standard matrix of cS
definition of cS
definition of standard matrix of S
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Addition and scalar multiplication satisfy some familiar rules of arithmetic:

0 denotes the zero matrix:
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If A is the standard matrix for a linear transformation S : Rn
→ R

m

and B is the standard matrix for a linear transformation T : Rp
→ R

n

then the composition S ◦ T (T first, then S) is linear.
What is its standard matrix AB?

Composition:

R
p

x

R
n

T (x)

R
m

S(T (x))

T
S

S ◦ T

A is a m× n matrix,
B is a n× p matrix,
AB is a m× p matrix - so the (i, j)-entry of AB cannot simply be aijbij .

HKBU Math 2207 Linear Algebra Semester 2 2020, Week 5, Page 7 of 27

Proceed column by column:
=First column of the standard matrix of S ◦ T
= (S ◦ T )(e1)
= S(T (e1))
= S(b1)
= Ab1, and similarly for the other columns.

Composition:

The jth column of AB is a linear combination of the columns of A using
weights from the jth column of B.

AB = A





| | |
b1 . . . bp

| | |



 =





| | |
Ab1 . . . Abp

| | |



 .So

Another view is the row-column method: the (i, j)-entry of AB is
ai1b1j + ai2b2j + · · ·+ ainbnj .

(writing bj for column j of B)

definition of standard matrix of S ◦ T
definition of S ◦ T
definition of standard matrix of T



EXAMPLE: Compute AB where A =

4 −2

3 −5

0 1

and B =

2 −3

6 −7
.

AB = A

 | | |
b1 . . . bp

| | |

 =

 | | |
Ab1 . . . Abp

| | |

 .

The jth column of AB is a linear combination of the columns of A using
weights from the jth column of B.
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Some familiar rules of arithmetic hold for matrix multiplication...

... but not all of them:
• Usually, AB 6= BA (because order matters for function composition:

S ◦ T 6= T ◦ S);
• It is possible for AB = 0 even if A 6= 0 and B 6= 0 - so you cannot solve matrix

equations by ‘factorising’.
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A fun application of matrix multiplication:

Consider rotations counterclockwise about the origin.
Rotation through (θ +ϕ) = (rotation through θ) ◦ (rotation through ϕ).

=

[
cos θ cosϕ− sin θ sinϕ − cos θ sinϕ− sin θ cosϕ
sin θ cosϕ+ cos θ sinϕ − sin θ sinϕ+ cos θ cosϕ

]

.

[
cos(θ +ϕ) − sin(θ +ϕ)
sin(θ +ϕ) cos(θ +ϕ)

]

=

[
cos θ − sin θ
sin θ cos θ

] [
cosϕ − sinϕ
sinϕ cosϕ

]

So, equating the entries in the first column:
cos(θ +ϕ) = cos θ cosϕ− sin θ sinϕ
sin(θ +ϕ) = cos θ sinϕ+ sin θ cosϕ
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Powers:

For a square matrix A, the kth power of A is Ak = A . . . A
︸ ︷︷ ︸

k times

.

If A is the standard matrix for a linear transformation T , then Ak is the standard
matrix for T k, the function that “applies T k times”.

Examples:

[
1 2
3 0

]3

=

[
1 2
3 0

] ( [
1 2
3 0

] [
1 2
3 0

] )

=

[
1 2
3 0

] [
7 2
3 6

]

=

[
13 14
21 6

]

.

[
3 0
0 −2

]3

=

[
3 0
0 −2

]([
3 0
0 −2

] [
3 0
0 −2

])

=

[
3 0
0 −2

] [
9 0
0 4

]

=

[
27 0
0 −8

]

=

[
33 0
0 (−2)3

]

.

Exercise: show that

[
a11 0
0 a22

]k

=

[
ak
11

0
0 ak

22

]

, and similarly for larger diagonal matrices.
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We can consider polynomials involving square matrices:

Example: Let p(x) = x3 − 2x2 + x− 2, and A =

[
1 2
3 0

]

, D =

[
3 0
0 −2

]

as on the

previous page. Then

p(A) = A
3
− 2A2 +A− 2I2 =

[

13 14
21 6

]

−

[

14 4
6 12

]

+

[

1 2
3 0

]

−

[

2 0
0 2

]

=

[

−2 12
18 −8

]

.

p(D) = D
3
− 2D2 +D − 2I2 =

[

27 0
0 −8

]

−

[

18 0
0 8

]

+

[

3 0
0 −2

]

−

[

2 0
0 2

]

=

[

10 0
0−20

]

=

[

p(3) 0
0p(−2)

]

.

For a polynomial involving a single matrix, we can factorise and expand as usual:
Example: x3 − 2x2 + x− 2 = (x2 + 1)(x− 2), and

(A2 + I2)(A− 2I2) =

[
8 2
3 7

] [
−1 2
3 −2

]

=

[
−2 12
18 −8

]

.

But be careful with the order when there are two or more matrices:
Example: x2 − y2 = (x+ y)(x− y), but
(A+D)(A−D) = A2 −AD +DA−D2 6= A2 −D2.

use the identity matrix instead of constants
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Transpose:

R
n

R
mThe transpose of A is the matrix AT

whose (i, j)-entry is aji.
i.e. we obtain AT by “flipping A

through the main diagonal”.

As a linear transformation, it “goes
in the opposite direction”, but it is
NOT the inverse function.

A

AT

Example: A =

[
4 0 5

−1 3 2

]

, AT =





4 −1
0 3
5 2



.

We will be interested in square matrices A such that
A = AT (symmetric matrix, self-adjoint linear transformation, §7.1), or
A−1 = AT (orthogonal matrix, or isometric linear transformation, §6.2).
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Properties of the transpose:





4 −2
3 −5
0 1





[
2 −3
6 −7

]

=





−4 2
−24 26

6 −7





A

An example to explain d.
this is NOT a proof

B

Guess:

[
4 3 0

−2 −5 1

] [
2 6

−3 −7

]

Guess again:

[
2 6

−3 −7

] [
4 3 0

−2 −5 1

]

=

[
−4 −24 6
2 26 −7

]

AT BT

ATBT

Cannot
multiply
these
matrices!
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§2.2: The Inverse of a Matrix
Remember from calculus that the inverse of a
function f : D → C is the function f−1 : C → D

such that f−1 ◦ f = identity function on D and
f ◦ f−1 = identity function on C.

Equivalently, f−1(y) is the unique solution to f(x) = y.
So f−1 exists if and only if f is one-to-one and onto. Then we say f is invertible.

Let T be a linear transformation whose standard matrix is A. From last week:
• T is one-to-one if and only if A has a pivot position in every column.
• T is onto if and only if A has a pivot position in every row.
So if T is invertible, then A must be a square matrix.

Warning: not all square matrices come from invertible linear transformations,

e.g.

[
1 0
0 0

]

.

D
C

f−1

f

HKBU Math 2207 Linear Algebra Semester 2 2020, Week 5, Page 16 of 27

Definition: A n× n matrix A is invertible if there is a n× n matrix C satisfying
CA = AC = In.

Remember from calculus that the inverse of a function f : D → C is the
function f−1 : C → D such that f−1 ◦ f = identity function on D and
f ◦ f−1 = identity function on C.

Fact: A matrix C with this property is unique:
if BA = AC = In, then BAC = BIn = B and BAC = InC = C so B = C.

The matrix C is called the inverse of A, and is written A−1. So

A−1A = AA−1 = In.

A matrix that is not invertible is sometimes called singular.
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Remember from calculus that the inverse of a function f : D → C is the
function f−1 : C → D such that f−1 ◦ f = identity function on D and
f ◦ f−1 = identity function on C.

Equivalently, f−1(y) is the unique solution to f(x) = y.

Theorem 5: Solving linear systems with the inverse: If A is an invertible n× n

matrix, then, for each b in R
n, the unique solution to Ax = b is x = A−1b.

Proof:
1. We show A−1b is a solution (i.e. A(A−1b) = b).
A(A−1b) = (AA−1)b = Inb = b, so x = A−1b is a solution to Ax = b:

2. We show this is the unique solution:
Let u be any solution to Ax = b, so:

Multiply both sides by A−1 on the left:

In particular, if A is an invertible n× n matrix, then rref(A) = In.

Au = b

A−1(Au) = A−1b

u = A−1b.
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R
n

B−1

A B

A−1

Properties of the inverse:

R
nR

n

(think about composition of functions, see diagram below)

Exercise: prove these properties.
(Hint: to show X is the inverse of Y , i.e. Y −1 = X, you should check XY = Y X = I.)
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Inverse of a 2× 2 matrix:

Fact: Let A =

[
a b

c d

]

.

i) if ad− bc 6= 0, then A is invertible and A−1 =
1

ad− bc

[
d −b

−c a

]

,

ii) if ad− bc = 0, then A is not invertible.

Proof of i):
[
a b

c d

](
1

ad− bc

[
d −b

−c a

])

=
1

ad− bc

[
ad− bc −ab+ ba

cd− dc −cb+ da

]

=

[
1 0
0 1

]

.

(
1

ad− bc

[
d −b

−c a

])[
a b

c d

]

=
1

ad− bc

[
da− bc db− bd

−ca+ ac −cb+ ad

]

=

[
1 0
0 1

]

.

Proof of ii): next week.
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Exercise: choose a matrix C that is the standard matrix of a reflection, and
check that C is invertible and C−1 = C.

Inverse of a 2× 2 matrix:

Example: Let A =

[
cosϕ − sinϕ
sinϕ cosϕ

]

, the standard matrix of rotation about the

origin through an angle ϕ counterclockwise.

cosϕ cosϕ− (− sinϕ) sinϕ = cos2 ϕ+ sin2 ϕ = 1 6= 0 so A is invertible, and

A−1 = 1

1

[
cosϕ sinϕ

− sinϕ cosϕ

]

=

[
cos(−ϕ) − sin(−ϕ)
sin(−ϕ) cos(−ϕ)

]

, the standard matrix of

rotation about the origin through an angle ϕ clockwise.

Example: Let B =

[
1 0
0 0

]

, the standard matrix of projection to the x1-axis.

1 · 0− 0 · 0 = 0 so B is not invertible.
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Inverse of a n× n matrix:

Suppose A is an invertible n× n matrix.
Let xi denote the ith column of A−1.

So A−1ei = xi

ei = Axi

So we can find xi by row-reducing [A|ei]. Because rref(A) = In, the result
should be [In|xi].

We carry out this row-reduction for all columns at the same time, i.e. solve all n
linear systems at the same time:

[A|In] =





| | |
A e1 . . . en

| | |




row reduction
−−−−−−−−−−→





| | |
In x1 . . . xn

| | |



 = [In|A
−1].

(to find the ith column of a matrix, multiply by ei)

(left-multiply both sides by A)

each column is the right hand side of a different linear
system, which all have the same left hand side

︸ ︷︷ ︸



If A is an invertible matrix, then

[A|In]
row reduction−−−−−−−−−−→ [In|A−1].

EXAMPLE: Find the inverse of


1 0 1

2 1 3

1 0 4

.


1 0 1 1 0 0

2 1 3 0 1 0

1 0 4 0 0 1




1 0 1 1 0 0



1 0 1 1 0 0

0 1 1 −2 1 0

0 0 1 −1/3 0 1/3




1 0 0

0 1 0

0 0 1





HKBU Math 2207 Linear Algebra Semester 2 2020, Week 5, Page 23 of 27

Indeed, we can:
Fact: If [A|In] row-reduces to [In|C], then A is invertible and C = A−1.

Proof: (different from textbook, not too important)

If [A|In] row-reduces to [In|C], then ci is the unique solution to Ax = ei, so
ACei = Aci = ei for all i, so AC = In.

Also, by switching the left and right sides, and reading the process backwards,
[C|In] row-reduces to [In|A]. So ai is the unique solution to Cx = ei, so
CAei = Cai = ei for all i, so CA = In.

We showed that, if A is invertible, then [A|In] row-reduces to [In|A
−1].

In other words, if we already knew that A was invertible, then we can find its
inverse by row-reducing [A|In].
It would be useful if we could apply this without first knowing that A is invertible.

In particular: an n× n matrix A is invertible if and only if rref(A) = In.
Also equivalent: A has a pivot position in every row and column.
For a square matrix, having a pivot position in each row is the same as having a
pivot position in each column.
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§2.3: Characterisations of Invertible Matrices
As observed at the end of the previous page: for a square n× n matrix A, the
following are equivalent:
• A is invertible.
• rref(A) = In.
• A has a pivot position in every row.
• A has a pivot position in every column.

This means that, in the very special case when A is a square matrix, all the statements
in the Existence of Solutions Theorem (“green theorem”) and all the statements in
the Uniqueness of Solutions Thoerem (“red theorem”) are all equivalent, so we can
put the two lists together to make a giant list of equivalent statements, on the next
page. (The third list, in blue, comes from combining the corresponding green and red
statements.) (Re the last line: you proved on ex. sheet #9 Q2c,d that it implies the
higher lines; exercise: prove that the higher lines imply it.)
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Theorem 8: Invertible Matrix Theorem (IMT): For a square n× n matrix A,
the following are equivalent:

A has a pivot position in
every row.

Ax = b has at least one
solution for each b in R

n.

The columns of A span
R

n.

The linear transformation
x 7→ Ax is onto.

There is a matrix D such
that AD = In.

A has a pivot position in
every column.

Ax = 0 has only the
trivial solution.

The columns of A are
linearly independent.

The linear transformation
x 7→ Ax is one-to-one.

There is a matrix C such
that CA = In.

rref(A) = In.

Ax = b has a unique
solution for each b in R

n.

The linear transformation
x 7→ Ax is an invertible
function.

A is invertible.



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 5, Page 26 of 27

We will add more statements to the Invertible Matrix Theorem throughout the class.

Important consequences:
• line 3: A set of n vectors in R

n span R
n if and only if the set is linearly independent.

• line 4: A linear transformation T : Rn → R
n (i.e. same domain and codomain) is

one-to-one if and only if it is onto.

Students’ main difficulty with IMT (or other theorems from later in the class) is when
to use them, i.e. which theorems will help with which proof questions. Some tips:
• Each theorem connects two ideas, e.g. IMT connects existence and uniqueness.

When the given information is about one idea, and the conclusion you want is about
the other idea, then the theorem may be useful.

• If the situation of the question fits the conditions of the theorem, then that theorem
may be useful. E.g. if you see a square matrix, consider IMT.
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Theorem 8: Invertible Matrix Theorem continued: A is invertible if and
only if AT is invertible.

This means that the statements in the Invertible Matrix Theorem are equivalent
to the corresponding statements with “row” instead of “column”, for example:
• The columns of an n× n matrix are linearly independent if and only if its
rows span R

n. (This is in fact also true for rectangular matrices -
transposing switches the green and red statements. Exercise: prove it.)

• If A is a square matrix and Ax = b has a unique solution for some b, then
the rows of A are linearly independent.

(Proof: from p18 (AT )−1 = (A−1)T .)

Advanced application (important for probability):

Let A be a square matrix. If the entries in each column of A sum to 1, then
there is a nonzero vector v such that Av = v.

Hint: (A− I)T






1
...
1




 = 0.



Recall from last week:

FACT: Let A =

[
a b
c d

]
.

i) if ad− bc 6= 0, then A is invertible and A−1 =
1

ad− bc

[
d −b
−c a

]
, (proof in Week 5 p19)

ii) if ad− bc = 0, then A is not invertible. (proof below)

QUESTION: What is the mysterious quantity ad− bc?

It’s easier to answer this using linear transformations.

Let T : R2 → R2 be the linear transformation T (x) =

[
a b
c d

]
x. So T (e1) =


 and T (e2) =


.

So: if ad− bc = 0, then the image of the unit square under T has zero area, i.e. T (e1), T (e2) lie on

the same line. So T (e1), T (e2) (i.e. the columns of A) is ,

so A is .

default
Arrow

default
Arrow
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§3.1-3.3: Determinants
Conceptually, the determinant detA of a square n× n matrix A is the signed
area/volume scaling factor of the linear transformation T (x) = Ax, i.e.:

• For any region S in R
n, the volume of its image T (S) is | detA| multiplied by

the original volume of S,
• If detA > 0, then T does not change “orientation”. If detA < 0, then T

changes “orientation”.

Example: Area of ellipse = det

[

a 0
0 b

]

× area of unit circle = abπ.

x 7→

[

a 0
0 b

]

x

a

b

1

1 This idea is
useful in
multivariate
calculus.
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Example: The standard matrix for reflection through the x2-axis is

[

−1 0
0 1

]

.

Its determinant is -1 · 1− 0 · 0 = −1: reflection does not change area, but
changes orientation.

Formula for 2× 2 matrix: det

[

a b

c d

]

= ad− bc.

Exercise: Guess what the determinant of a rotation matrix is, and check your answer.
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Example: The standard matrix of projection onto the x1-axis is

[

1 0
0 0

]

. Its

determinant is 1 · 0− 0 · 0 = 0. Projection sends the unit square to a line, which
has zero area.

Formula for 2× 2 matrix: det

[

a b

c d

]

= ad− bc.

Theorem: A is invertible if and only if detA 6= 0.



Calculating Determinants

Notation: Aij is the submatrix obtained from matrix A by deleting the ith row and jth column of A.

EXAMPLE:

A =

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

A23 =

Recall that det
a b
c d

= ad − bc and we let deta = a.

For n ≥ 2, the determinant of an n × n matrix A = aij  is given by

detA = a11 detA11 − a12 detA12 +⋯ + −11+na1n detA1n

= ∑
j=1

n
−11+ja1j detA1j

EXAMPLE: Compute the determinant of 
1 0 2
3 −1 2

2 10



THEOREM 1 The determinant of an n × n matrix A can be computed by expanding across 
any row or down any column:

(expansion across row i)

(expansion down column j) 

+ − + ⋯

− + − ⋯

+ − + ⋯

⋮ ⋮ ⋮ ⋱

detA =        ai1 detAi1 +            ai2 detAi2 + ⋯ + −1i+nain detAin

= ∑
j=1

n

−1i+jaij detAij

−1i+1 −1i+2

detA =         a1j detA1j +           a2j detA2j + ⋯ + −1n+janj detAnj

= ∑
i=1

n

−1i+jaij detAij

−11+j −12+j

Use a matrix of signs to determine −1i+j

EXAMPLE: An easier way to compute the determinant of
0 21

3 −1 2

2 10



∗ ∗ ⋯ ∗ ∗

0 ∗ ⋯ ∗ ∗

0 0 ⋱ ∗ ∗

0 0 0 ∗ ∗

0 0 0 0 ∗

∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ⋱ 0 0

∗ ∗ ⋯ ∗ 0

∗ ∗ ⋯ ∗ ∗

(upper triangular) (lower triangular)

THEOREM 2: f A is a triangular matrix, then det A is the product of the diagonal entries of A.

EXAMPLE:

2 3 4 5

0 1 2 3

0 0 −3 5

0 0 0 4

=

It's easy to compute the determinant of a triangular matrix:

I

EXAMPLE:

4 3 1 8
05

0 0 −3 0
7 0 2 4

=

3 −1
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1. Replacement: add a multiple of one row to another row.
determinant does not change.

2. Interchange: interchange two rows.
determinant changes sign.

3. Scaling: multiply all entries in a row by a nonzero constant.
determinant scales by a factor of c.

How the determinant changes under row operations:

Ri → Ri+cRj

Ri → Rj , Rj → Ri

Ri → cRi, c 6= 0

To help you remember:

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

= 1,

∣

∣

∣

∣

1 c

0 1

∣

∣

∣

∣

= 1,

∣

∣

∣

∣

0 1
1 0

∣

∣

∣

∣

= −1,

∣

∣

∣

∣

c 0
0 1

∣

∣

∣

∣

= c.

Because we can compute the determinant by expanding down columns instead of
across rows, the same changes hold for “column operations”.

after
replacementoriginal

after
interchange after scaling
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1. Replacement: Ri → Ri + cRj determinant does not change.

2. Interchange: Ri → Rj , Rj → Ri determinant changes sign.

3. Scaling: Ri → cRi, c 6= 0 determinant scales by a factor of c.

R2 → R2 − 5R1

R3 → R3 − 7R1

Usually we compute determinants using a mixture of “expanding across a row or
down a column with many zeroes” and “row reducing to a triangular matrix”.

Example:
∣

∣

∣

∣

∣

∣

∣

∣

2 3 4 6
0 5 0 0
5 5 6 7
7 9 6 10

∣

∣

∣

∣

∣

∣

∣

∣

= 5

∣

∣

∣

∣

∣

∣

2 4 6
5 6 7
7 6 10

∣

∣

∣

∣

∣

∣

= 5 · 2

∣

∣

∣

∣

∣

∣

1 2 3
5 6 7
7 6 10

∣

∣

∣

∣

∣

∣

= 5 · 2

∣

∣

∣

∣

∣

∣

1 2 3
0 −4 −8
0 −8 −11

∣

∣

∣

∣

∣

∣

= 5 · 2 · −4

∣

∣

∣

∣

∣

∣

1 2 3
0 1 2
0 −8 −11

∣

∣

∣

∣

∣

∣

= 5 · 2 · −4

∣

∣

∣

∣

∣

∣

1 2 3
0 1 2
0 0 5

∣

∣

∣

∣

∣

∣

= 5 · 2 · −4 · 1 · 1 · 5 = −200.

factor out 2 from R1

factor out -4 from R2 R3 → R3 + 8R2
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1. Replacement: Ri → Ri + cRj determinant does not change.

2. Interchange: Ri → Rj , Rj → Ri determinant changes sign.

3. Scaling: Ri → cRi, c 6= 0 determinant scales by a factor of c.

Useful fact: If two rows of A are multiples of each other, then detA = 0.

Proof: Use a replacement row operation to make one of the rows into a row of
zeroes, then expand along that row.

Example:

∣

∣

∣

∣

∣

∣

1 3 4
5 9 3
2 6 8

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 3 4
5 9 3
0 0 0

∣

∣

∣

∣

∣

∣

= 0

∣

∣

∣

∣

3 4
9 3

∣

∣

∣

∣

− 0

∣

∣

∣

∣

1 4
5 3

∣

∣

∣

∣

+ 0

∣

∣

∣

∣

1 3
5 9

∣

∣

∣

∣

= 0.

R3 → R3 − 2R1
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scaling

Why does the determinant change like this under row and column operations? Two
views:

Either: It is a consequence of the expansion formula in Theorem 1;

Or: By thinking about the signed volume of the image of the unit cube under the
associated linear transformation:
2. Interchanging columns changes the orientation of the image of the unit cube.
3. Scaling a column applies an expansion to one side of the image of the unit cube.
1. Column replacement rearranges the image of the unit cube without changing its
volume.

[

7 3
2 4

] [

4 3
−2 4

]

replacement

[

7 6
2 8

]



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 6, Page 12 of 17

Properties of the determinant:

Theorem 6: Determinants are multiplicative: For square matrices A and B:

det(AB) = detA detB.

In particular:
(let B = A−1)

det(AT ) = detA.

det(A−1) =
det In
detA

=
1

detA
, det(cA) = det







c 0
. . .

0 c






detA = cn detA.

(where A is n× n)
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Theorem 4: Invertibility and determinants: A square matrix A is invertible
if and only if detA 6= 0.

Proof 1: By the Invertible Matrix Theorem, A is invertible if and only if rref(A) has
n pivots. Row operations multiply the determinant by nonzero numbers. So
detA = 0 if and only if det(rref(A)) = 0, which happens precisely when rref(A) has
fewer than n pivots.

Proof 2: By the Invertible Matrix Theorem, A is invertible if and only if its columns
span R

n. Since the image of the unit cube is a subset of the span of the columns,
this image has zero volume if the columns do not span R

n.

Properties of the determinant:

So we can use determinants to test whether {v1, . . . ,vn} in R
n is linearly

independent, or if it spans Rn: it does when det









| | |
v1 . . . vn

| | |







 6= 0.
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Application in MultiCal (MATH2205): determinants and volumes

Example: Find the area of the parallelogram with vertices

[

0
0

]

,

[

−2
3

]

,

[

4
−3

]

,

[

2
0

]

.

Answer: This parallelogram is the image of the
unit square under a linear transformation T with

T (e1) =

[

−2
3

]

and T (e2) =

[

4
−3

]

.

T (e1)

T (e2)

So area of parallelogram =

∣

∣

∣

∣

det

[

−2 4
3 −3

]∣

∣

∣

∣

× area of unit square = | − 6| · 1 = 6.

This works for any parallelogram where the origin is one
of the vertices (and also in R

3, for parallelopipeds).
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Example: Find the area of the parallelogram with vertices

[

−2
−1

]

,

[

−4
2

]

,

[

2
−4

]

,

[

0
−1

]

.

Answer: Use a translation to move one of the
vertices of the parallelogram to the origin - this
does not change the area.

The formula for this translation function is
x 7→ x− v, where v is one of the vertices of the
parallelogram.

v

Here, the vertices of the translated parallelogram are

[

−2
−1

]

−

[

−2
−1

]

=

[

0
0

]

[

−4
2

]

−

[

−2
−1

]

=

[

−2
3

]

,

[

2
−4

]

−

[

−2
−1

]

=

[

4
−3

]

,

[

0
−1

]

−

[

−2
−1

]

=

[

2
0

]

.

So, by the previous example, the area of the parallelogram is 6.

Application in MultiCal (MATH2205): determinants and volumes

T (e1)

T (e2)
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Application in ODE (MATH3405): determinants and linear systems

Cramer’s rule: Let A be an invertible n× n matrix with columns a1, . . . ,an.
For any b in R

n, the unique solution x of Ax = b is given by

xi =

det





| | | | |
a1 . . . b . . . an

| | | | |





detA
.

Proof:

put b in the ith
column instead of ai

A





| | | | |
e1 . . . x . . . en

| | | | |



 =





| | | | |
Ae1 . . . Ax . . . Aen
| | | | |



 =





| | | | |
a1 . . . b . . . an

| | | | |



 .

So
detA det





| | | | |
e1 . . . x . . . en

| | | | |



 = det





| | | | |
a1 . . . b . . . an

| | | | |



 .
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To finish the proof, we need to show det





| | | | |
e1 . . . x . . . en

| | | | |



 = xi.

Note that the ith row of this matrix is [0 . . . xi . . . 0].
And expanding along this ith row gives xi det(In−1) = xi.

Some examples:

n = 3, i = 1: det





| | |
x e2 e3

| | |



 = det





x1 0 0
x2 1 0
x3 0 1



 = x1 det

[

1 0
0 1

]

.

n = 3, i = 2: det





| | |
e1 x e3

| | |



 = det





1 x1 0
0 x2 0
0 x3 1



 = x2 det

[

1 0
0 1

]

.
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Cramer’s rule is much slower than row-reduction for linear systems with actual
numbers, but is useful for obtaining theoretical results.

Example: If every entry of A is an integer and detA = 1 or −1, then every entry
of A−1 is an integer.

Exercise: using the fact detAB = detA detB, prove the converse (if every entry
of A and of A−1 is an integer, then detA = 1 or −1).

Proof: Cramer’s rule tells us that every entry of A−1 is the determinant of an
integer matrix divided by detA. And the determinant of an integer matrix is an
integer.

Applying Cramer’s rule to solve Ax = ei gives a formula for the ith column of A−1

(see Theorem 8 in textbook; this formula is called the adjugate or classical adjoint).

Exercise: use this process to show the 2× 2 formula:

[

a b

c d

]

−1

=
1

ad− bc

[

d −b

−c a

]

.
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Remember the addition and scalar multiplication of matrices:

(A+B)ij = aij + bij ,

(cA)ij = caij ,

e.g

[
4 0 5
−1 3 2

]

+

[
1 1 1
3 5 7

]

=

[
5 1 6
2 8 9

]

.

e.g. (−3)

[
4 0 5
−1 3 2

]

=

[
−12 0 −15

3 −9 −6

]

.

Is this really different from R
6?











4
0
5
−1
3
2











+











1
1
1
3
5
7











=











5
1
6
2
8
9











. (−3)











4
0
5
−1
3
2











=











−12
0

−15
3
−9
−6











.
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Remember from calculus the addition and scalar multiplication of polynomials:

e.g (2t2 + 1) + (−t2 + 3t+ 2) = t2 + 3t+ 3.

Is this really different from R
3?





1
0
2



+





2
3
−1



 =





3
3
1



.

e.g (−3)(−t2 + 3t+ 2) = 3t2 − 9t− 6.

(−3)





2
3
−1



 =





−6
−9
3



.

← coefficient of 1
← coefficient of t
← coefficient of t2
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§4.1, pp217-218: Abstract Vector Spaces

As the examples above showed, there are many objects in mathematics that
“looks” and “feels” like R

n. We will also call these vectors.

The real power of linear algebra is that everything we learned in Chapters 1-3
can be applied to all these abstract vectors, not just to column vectors.

You should think of abstract vectors as objects which can be added and
multiplied by scalars - i.e. where the concept of “linear combination” makes
sense. This addition and scalar multiplication must obey some “sensible rules”
called axioms (see next page).

The axioms guarantee that the proof of every result and theorem from Chapters
1-3 will work for our new definition of vectors.
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axioms
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You can check the other 9 axioms by using the properties of matrix addition and
scalar multiplication (page 5 of week 5 slides, theorem 2.1 in textbook).

Examples of vector spaces:

Is the set of all matrices (of all sizes) a vector space?
No, because we cannot add two matrices of different sizes, so axiom 1 does
not hold.

The zero vector for M2×3 is

[
0 0 0
0 0 0

]

.

Similarly, Mm×n, the set of all m× n matrices, is a vector space.

M2×3, the set of 2× 3 matrices.

Let’s check axiom u + 0 = u.
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Pn, the set of polynomials of degree at most n.

Each of these polynomials has the form

for some numbers a0, a1, . . . , an.

Exercise: convince yourself that the other axioms are true.

Examples of vector spaces:

a0 + a1t+ a2t
2 + · · ·+ ant

n,

The zero vector for Pn is 0 + 0t+ 0t2 + · · ·+ 0tn.

(a0 + a1t+ a2t
2 + · · ·+ ant

n) + (b0 + b1t+ b2t
2 + · · ·+ bnt

n)
= (a0 + b0) + (a1 + b1)t+ (a2 + b2)t

2 + · · ·+ (an + bn)t
n, which also has degree

at most n.

Let’s check axiom

Let’s check axiom

u + 0 = u.
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Warning: the set of polynomials of degree exactly n is not a vector space,
because axiom 1 does not hold:

P , the set of all polynomials (no restriction on the degree) is a vector space.

Examples of vector spaces:

C(R), the set of all continuous functions is a vector space (because the sum of
two continuous functions is continuous, the zero function is continuous, etc.)

(t3 + t
2)

︸ ︷︷ ︸
degree 3

+ (−t
3 + t

2)
︸ ︷︷ ︸

degree 3

= 2t2
︸︷︷︸
degree2

These last two examples are a bit different from Mm×n and Pn because they are
infinite-dimensional (more later, see week 8.5 §4.5).

(You do not have to remember the notation Mm×n,Pn, etc. for the vector spaces.)
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Let W be the set of symmetric 2× 2 matrices. Is W a vector space?

A = AT , i.e. A =

[
a b

b d

]

for some a, b, d

Note that the axioms come in two types:
• Axioms 2, 3, 5, 7, 8, 9, 10 are about the

interactions of vectors with each other, they do
not mention the space V . Since they hold for
M2×2, they also hold for W .

• So we only need to check axioms 1, 4, 6, that
mention both the vectors and the space V .
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Definition: A subset W of a vector space V is a subspace of V if the closure
axioms 1,4,6 hold:
4. The zero vector is in W .
1. If u,v are in W , then their sum u+ v is in W . (closed under addition)
6. If u is in W and c is any scalar, the scalar multiple cu is in W . (closed under

scalar multiplication)

Fact: W is itself a vector space (with the same addition and scalar
multiplication as V ) if and only if W is a subspace of V .

V

W

To show that W is a subspace, check all three
axioms directly, for all u,v, c (i.e. use variables).
(You may find it easier to check 6. before 1.)

To show that W is not a subspace, show that one of
the axioms is false, for a particular value of u,v, c.

0
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Example: Let W=











a

0
b





∣
∣
∣
∣
∣
∣

a, b ∈ R






, i.e. the x1x3-plane. We show W is a subspace of R3:

4. The zero vector is in W because it is the vector with a = 0, b = 0.

1. Take two arbitrary vectors in W :





a

0
b



 and





x

0
y



. Then





a

0
b



+





x

0
y



 =





a+ x

0
b+ y



 ∈W .

6. Take an arbitrary vector in W :





a

0
b



, and any c ∈ R. Then c





a

0
b



 =





ca

0
cb



 ∈W .

Definition: A subset W of a vector space V is a subspace of V if:
4. The zero vector is in W .
1. If u,v are in W , then their sum u+ v is in W .
6. If u is in W and c is any scalar, the scalar multiple cu is in W .

Tip: to show that a vector is in a set defined by “{∗|†}” notation, you show that
it has the form in ∗, satisfying the conditions in †.
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An alternative answer:

1.

[
0
1

]

,

[
1
2

]

are in U , but

[
0
1

]

+

[
1
2

]

=

[
1
3

]

is not of the

form

[
x

x+ 1

]

, so

[
1
3

]

is not in U . So U is not closed

under addition.

Best examples of a subspace: lines and planes containing
the origin in R

2 and R
3.

4. The zero vector is not in U , because there is no value of

x with

[
x

x+ 1

]

=

[
0
0

]

.
U

Example: Let U =

{[
x

x+ 1

]∣
∣
∣
∣
x ∈ R

}

. To show that U is not a subspace of R2, we

need to find one counterexample to one of the axioms, e.g.
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Example: Let Q = {p ∈ P3|p(t) = at+ 3a for some a ∈ R}, i.e.
Q = {at+ 3a|a ∈ R}. We show that Q is a subspace of P3:

4. The zero polynomial (0+0t+0t2 +0t3) is in Q because it is at+3a when a = 0.

1. Take two arbitrary polynomials in Q: at+ 3a and bt+ 3b. Then
(at+ 3a) + (bt+ 3b) = (a+ b)t+ 3(a+ b) ∈ Q.

6. Take an arbitrary polynomial in Q: at+ 3a, and any c ∈ R. Then
c(at+ 3a) = (ca)t+ 3(ca) ∈ Q.

Every vector space V contains two subspaces (its smallest and biggest ones):
• The set {0} containing only the zero vector is the zero subspace:

4. 0 is clearly in the subspace.

1. 0+ 0 = 0 (use axiom 4: 0+ u = u for all u in V ).

6. c0 = 0 (use axiom 7: c(0+ 0) = c0+ c0; and left hand side is c0.)

• The whole space V is a subspace of V .
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Theorem 1: Spans are subspaces: If v1, . . . ,vp are vectors in a vector space
V , then Span {v1, . . . ,vp} is a subspace of V .

The first of two shortcuts to show that a set is a subspace:

Redo Example: (p10) Let W =











a

0
b





∣
∣
∣
∣
∣
∣

a, b ∈ R






.

We can rewrite W as






a





1
0
0



+ b





0
0
1





∣
∣
∣
∣
∣
∣

a, b ∈ R






= Span











1
0
0



 ,





0
0
1










.

So W is a subspace of R3.

“separate” the “free variables”
like how we write a solution in
parametric form (week 2 p31)
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Theorem 1: Spans are subspaces: If v1, . . . ,vp are vectors in a vector space
V , then Span {v1, . . . ,vp} is a subspace of V .

The first of two shortcuts to show that a set is a subspace:

Warning: Theorem 1 does not help us show that a set is not a subspace.

Redo Example: (p8) Let Sym2×2 be the set of symmetric 2× 2 matrices. Then

Sym2×2 =

{[
a b

b d

]

∈M2×2

∣
∣
∣
∣
a, b, d ∈ R

}

=

{

a

[
1 0
0 0

]

+ b

[
0 1
1 0

]

+ d

[
0 0
0 1

]∣
∣
∣
∣
a, b, d ∈ R

}

= Span

{[
1 0
0 0

]

,

[
0 1
1 0

]

,

[
0 0
0 1

]}

,

so Sym2×2 is a subspace of M2×2.



THEOREM 1: Spans are subspaces
If v1,… ,vp are vectors in a vector space V, then Spanv1,… ,vp  is a subspace of V.

Proof: We check axioms 4, 1 and 6 in the definition of a subspace.

4. 0 is in Spanv1,… ,vp since

0 =_____v1 + _____v2 +⋯ + _____vp

1. To show that Spanv1,… ,vp  is closed under addition, we choose two arbitrary vectors in
Spanv1,… ,vp :

u =a1v1 + a2v2 +⋯ + apvp

and

v =b1v1 + b2v2 +⋯ + bpvp.

Then
u + v =a1v1 + a2v2 +⋯ + apvp + b1v1 + b2v2 +⋯ + bpvp

=   ____ ____v1  + ____ ____v2  + ⋯ + ____ ____vp

 So u + v is in Spanv1,… ,vp .

6. To show that Spanv1,… ,vp  is closed under scalar multiplication, choose an arbitrary number
c and an arbitrary vector in Spanv1,… ,vp :

v =b1v1 + b2v2 +⋯ + bpvp.

Then
cv =cb1v1 + b2v2 +⋯ + bpvp

= ______v1 + ______v2 +⋯ + ______vp

So cv is in Spanv1,… ,vp.

Since 4,1,6 hold, Spanv1,… ,vp  is a subspace of V.
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R
n

R
m

Ax

7−→

x

The second of two shortcuts to show that a set is a subspace:

Definition: The null space of a m× n matrix A, written NulA, is the solution set
to the homogeneous equation Ax = 0.

NulA

0

Theorem 2: Null Spaces are Subspaces: The null space of an m× n matrix A

is a subspace of Rn.

This theorem is useful for showing that a set defined by conditions is a subspace.

Warning: If b 6= 0, then the solution set of Ax = b is not a subspace, because it
does not contain 0.

0
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The second of two shortcuts to show that a set is a subspace:

Definition: The null space of a m× n matrix A, written NulA, is the solution set
to the homogeneous equation Ax = 0.

Theorem 2: Null Spaces are Subspaces: The null space of an m× n matrix A

is a subspace of Rn.

Example: Show that the line L =

{[
x

y

]

∈ R
2

∣
∣
∣
∣
y = 2x

}

is a subspace of R2.

Here, we do not have “x, y ∈ R”: instead, x and y are related by the condition
y = 2x. In these situations, it’s often easier to show that the given set is a null
space.

Answer: y = 2x is the same as 2x− y = 0, which in matrix form is
[
2 −1

]
x = 0. So L is the solution set to

[
2 −1

]
x = 0, which is the null space

of the matrix
[
2 −1

]
. Because null spaces are subspaces, L is a subspace.



The null space of an m × n matrix A, written as Nul A, is the set of all solutions to the
homogeneous equation Ax = 0.

THEOREM 2 The null space of an m × n matrix A is a subspace of Rn. 

Proof: Nul A is a subset of Rn since A has n columns. We check axioms 4,1,6 in the 
definition of a subspace.

4. 0 is in Nul A because

1. If u and v                     , we show that u + v is in Nul A.      u and v 

Therefore

Au + v = 

6. If u is in Nul A and c is a scalar, we show that cu iis in Nul A:

Acu = 

Since axioms 4,1,6 hold, Nul A is a subspace of Rn.

 are in Nul A  are in Nul A BecauseAxiom 1 says:
 
 
So we need to show (the conclusion in formulas):

Axiom 6 says:
 
 
So we need to show:
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Axioms for a subspace:
4. The zero vector is in W .
1. If u,v are in W , then u+ v is in W . (closed under addition)
6. If u is in W and c is a scalar, then cu is in W . (closed under scalar multiplication)

Summary:

Ways to show that a set W is a subspace:

• { ∗ |s, t ∈ R}
choose v,w
−−−−−−−−−→ {sv + tw|s, t ∈ R} = Span {v,w}.

• {x ∈ R
n| † }

choose A
−−−−−−−→ {x ∈ R

n|Ax = 0} = NulA.
• Show that W is the kernel or range of a linear transformation (later, p41-42).
• Check all three axioms directly, for all u,v, c.

To show that a set is not a subspace:
• Show that one of the axioms is false, for a particular value of u,v, c.

Best examples of a subspace: lines and planes containing the origin in R
2 and R

3.

Warning: no functions are involved!
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One example of the power of abstract vector spaces - solving differential equations:

Answer: The differentiation function D : P5 → P5 given by D(p) = d
dt
p is a linear

transformation (later, p39).

The function T : P5 → P5 given by T (p) = d2

dt2
p(t)− 4 d

dt
p(t) + 3p(t) is a sum of

compositions of linear transformations, so T is also linear.

We can check that the polynomial t+ 1 is a solution.

So, by the Solutions and Homogeneous Equations Theorem, the solution set to the
above differential equation is all polynomials of the form t+1+q(t) where T (q) = 0.

Extra: P5 is both the domain and codomain of T , so the Invertible Matrix Theorem
applies. So, if the above equation has more than one solution, then there is a

polynomial g such that d2

dx2p(t)− 4 d
dt
p(t) + 3p(t) = g(t) has no solutions.

d2

dt2
p(t)− 4

d

dt
p(t) + 3p(t) = 3t− 1?

Question: What are all the polynomials p of degree at most 5 that satisfy
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§4.2, pp229-230, pp249-250: Subspaces and Matrices
Each linear transformation has two vector subspaces associated to it.

For each of these two subspaces, we are interested in two problems:
a. given a vector v, is it in the subspace?
b. can we write this subspace as Span {v1, . . . ,vp} for some vectors v1, . . . ,vp?

The set {v1, . . . ,vp} is then called a spanning set of the subspace.
b. can we write this subspace as Span {v1, . . . ,vp} for linearly independent vectors

v1, . . . ,vp? The set {v1, . . . ,vp} is then called a basis of the subspace.

Problem b is important because it means every vector in the subspace can be
written as c1v1 + · · ·+ cpvp. This allows us to calculate with and prove
statements about arbitrary vectors in the subspace.
Problem b is important because it means every vector in the subspace can be
written uniquely as c1v1 + · · ·+ cpvp (proof next week, §4.4).
We turn a spanning set into a basis by removing some vectors - this is the
Spanning Set Theorem / casting-out algorithm (p28, also week 8 p10).

∗

∗
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R
n

R
m

Ax

7−→

x

Definition: The null space of a m× n matrix A, written NulA, is the solution set
to the homogeneous equation Ax = 0.

0

Remember from p16:

NulA

0
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NulA is implicitly defined (i.e. defined by conditions) - problem a is easy,
problem b takes more work.

So the solution set is







s







2
2
1
0






+ t







−3
−2
0
1







∣
∣
∣
∣
∣
∣
∣
∣

s, t ∈ R







. So NulA = Span













2
2
1
0






,







−3
−2
0
1













.

Example: Let A =

[
1 −3 4 −3
3 −7 8 −5

]

. a. Is v =







1
1
1
1







in NulA?

b. Find vectors v1, . . . ,vp which span NulA.
Answer:

a. Av =

[
−1
−1

]

6= 0, so v is not in NulA. x1 = 2x3 −3x4

x2 = 2x3 −2x4

x3 = x3

x4 = x4

b. [A|0]

[
1 0 −2 3 0
0 1 −2 2 0

]

row reduction

linearly independent
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In general: the solution to Ax = 0 in parametric form looks like
{siwi + sjwj + . . . |si, sj , · · · ∈ R}, where xi, xj , . . . are the free variables (one vector
for each free variable).
To determine if the ws are linearly independent, solve ciwi + cjwj + · · · = 0 for the cs.
Look in the ith row: the ith row of wi is 1; the ith row of any other wj is 0. So ci = 0.
The same argument shows that all cs are zero, so the ws are linearly independent.

x1 = 2x3 −3x4

x2 = 2x3 −2x4

x3 = x3

x4 = x4

b. [A|0]

[
1 0 −2 3 0
0 1 −2 2 0

]

row reduction

w3 w4

So the solution set is







s







2
2
1
0






+ t







−3
−2
0
1







∣
∣
∣
∣
∣
∣
∣
∣

s, t ∈ R







. So NulA = Span













2
2
1
0






,







−3
−2
0
1













.

linearly independent



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 7, Page 25 of 46

R
n

R
m

Definition: The column space of a m× n matrix A, written ColA, is the span of
the columns of A.

0

ColAColA

Because spans are subspaces, it is obvious that ColA is a subspace of Rm.

It follows from §1.3-1.4 that ColA is the set of b for which Ax = b has solutions.

Ax

7−→

x

NulA

0
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Answer:

a.





0 3 −6 6 4 −5
3 −7 8 −5 8 9
1 −3 4 −3 2 5





There is no row [0 . . . 0|�], so v is in ColA.





1 −3 4 3 2 5
0 1 −2 2 1 −3
0 0 0 0 1 4




row reduction

to echelon form

ColA is explicitly defined - problem a takes work, problem b is easy.

Example: Let A=





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2



. a. Is v =





−5
9
5



 in ColA?

b. Find vectors v1, . . . ,vp which span ColA.

b. By definition, ColA is the span of the columns of A, so

ColA = Span











0
3
1



 ,





3
−7
3



 ,





−6
8
4



 ,





6
−5
−3



 ,





4
8
2










.

Note that this spanning set is not linearly independent (more than 3 vectors in R
3).
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← problem b

p.222 of
textbook

← problem a
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



0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2





As we saw on p26, it is easy to obtain a spanning set for ColA (just take all the
columns of A), but usually this spanning set is not linearly independent.

To obtain a linearly independent set that spans ColA, take the pivot columns of A -
this is called the casting-out algorithm.

Example: Let A =





| | | | |
a1 a2 a3 a4 a5
| | | | |



 =





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2



.

Find a linearly independent set that spans ColA.

Answer:

The pivot columns are 1,2 and 5, so {a1,a2,a5}=











0
3
1



 ,





3
−7
3



 ,





4
8
2










is one answer.

(The answer from the casting-out algorithm is not the only answer - see p35.)





1 −3 4 3 2
0 1 −2 2 1
0 0 0 0 1




row reduction

to echelon form

HKBU Math 2207 Linear Algebra Semester 2 2020, Week 7, Page 29 of 46

Casting-out algorithm: the pivot columns of A is a linearly independent set that
spans ColA.
Why does the casting-out algorithm work part 1: why the pivot columns are
linearly independent:
Example:

A =





| | | | |
a1 a2 a3 a4 a5
| | | | |



 =





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2





So





| | |
a1 a2 a5
| | |



 is row-equivalent to





1 −3 2
0 1 1
0 0 1



, which has no free variables.

So {a1,a2,a5} is linearly independent.





1 −3 4 3 2
0 1 −2 2 1
0 0 0 0 1



.
row reduction

to echelon form
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Casting-out algorithm: the pivot columns of A is a linearly independent set that
spans ColA.
Why does the casting-out algorithm work part 2: why the pivot columns span ColA:

To explain this, we need to look at the solutions to Ax = 0:
Example:

A =





| | | | |
a1 a2 a3 a4 a5
| | | | |



 =





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2





So the solution set to Ax = 0 is where s, t can take any value.

row reduction




1 0 −2 3 0
0 1 −2 2 0
0 0 0 0 1





to rref

s









2
2
1
0
0









+ t









−3
−2
0
1
0









x3 = 1
x4 = 0

x3 = 0
x4 = 1

These correspond respectively to the linear dependence relations
2a1 + 2a2 + a3 = 0 and −3a1 − 2a2 + a4 = 0.
Rearranging: a3 = −2a1 − 2a2 and a4 = 3a1 + 2a2.
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In other words: consider the solution to Ax = 0 where one free variable xi is 1, and
all other free variables are 0. This corresponds to a linear dependence relation
among the columns of A, which can be rearranged to express the column ai as a
linear combination of the pivot columns.

Why this is useful: any vector v in ColA has the form

v =c1a1 + c2a2 + c3a3 + c4a4 + c5a5,

c1a1 + c2a2 + c3(−2a1 − 2a2) + c4(3a1 + 2a2) + c5a5

=(c1 − 2c3 + 3c4)a1 + (c2 − 2c3 + 2c4)a2 + c5a5,

which we can rewrite as

a linear combination of the pivot columns a1,a2,a5. So v is in Span {a1,a2,a5},
and so ColA = Span {a1,a2,a5}.

A(2, 2, 1, 0, 0) = 0

A(−3,−2, 0, 1, 0) = 0

2a1 + 2a2 + a3 = 0

−3a1 − 2a2 + a4 = 0

a3 = −2a1 − 2a2.

a4 = 3a1 + 2a2.
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



1 0 −2 3 0
0 1 −2 2 0
0 0 0 0 1





Another view: the casting-out algorithm as a greedy algorithm:





| | | | |
a1 a2 a3 a4 a5
| | | | |



 =





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2




row reduction

Example:

rref









| |
a1 a2
| |







 =





1 0
0 1
0 0



 has a pivot in every column, so {a1,a2} is linearly

rref









|
a1
|







 =





1
0
0



 has a pivot in every column, so {a1} is linearly independent,

to rref

rref









| | |
a1 a2 a3
| | |







 =





1 0 −2
0 1 −2
0 0 0



 does not have a pivot in every column, so

so we keep a1.

{a1,a2,a3} is linearly dependent, so we
remove a3.

independent, so we keep a2.
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



1 0 −2 3 0
0 1 −2 2 0
0 0 0 0 1





Another view: the casting-out algorithm as a greedy algorithm (continued):





| | | | |
a1 a2 a3 a4 a5
| | | | |



 =





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2




row reduction

Example:

to rref

rref









| | |
a1 a2 a4
| | |







 =





1 0 3
0 1 2
0 0 0



 does not have a pivot in every column, so
{a1,a2,a4} is linearly dependent, so we
remove a4.

rref









| | |
a1 a2 a5
| | |







 =





1 0 0
0 1 0
0 0 1



 has a pivot in every column, so {a1,a2,a5} is
linearly independent, so we keep a5.
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So the casting-out algorithm is a greedy algorithm in that it prefers vectors that
are earlier in the set.

Example: Let A =





| | | | |
a1 a2 a3 a4 a5
| | | | |



 =





0 3 −6 6 4
3 −7 8 −5 8
1 −3 4 −3 2



.

Find a linearly independent set containing a3 that spans ColA.

Warning: the example on the previous two pages is a little misleading: a subset of
the columns of rref(A) is not always the reduced echelon form of those columns of

A, e.g.rref









| |
a2 a3
| |







 6=





0 −2
1 −2
0 0



 (because this isn’t in reduced echelon form).

The correct statement is that a subset of the columns of rref(A) is row equivalent
to those columns of A.

Answer: To ensure that the set contains a3, we should make it the leftmost

column - e.g. we row-reduce





| | | | |
a3 a1 a2 a4 a5
| | | | |



 and take the pivot columns.



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 7, Page 35 of 46

Definition: The row space of a m× n matrix A, written RowA, is the span of the
rows of A. It is a subspace of Rn.

Example: A =





0 1 0 4
0 2 0 8
1 1 −3 2





RowA is explicitly defined - indeed, it is equivalent to ColAT .
So, to see if a vector v is in RowA, row-reduce [AT |vT ].
To find a linear independent set that spans RowA, take the pivot columns of AT , or...

RowA = Span {(0, 1, 0, 4), (0, 2, 0, 8), (1, 1,−3, 2)}.

Theorem 13: Row operations do not change the row space. In particular, the
nonzero rows of rref(A) is a linearly independent set whose span is RowA.

rref(A) =





1 0 −3 −2
0 1 0 4
0 0 0 0





E.g. for the above example, RowA = Span {(1, 0,−3,−2), (0, 1, 0, 4)}.

Warning: the “pivot rows” of A do not usually span RowA:
e.g. here (1, 1,−3, 2) is in RowA but not in Span {(0, 1, 0, 4), (0, 2, 0, 8)}.
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Proof of the second sentence in Theorem 13:
From the first sentence, Row(A) = Row(rref(A)) = Span of the nonzero rows of
rref(A). Because each nonzero row has a 1 in one pivot column (different column for
each row) and 0s in all other pivot columns, these rows are linearly independent.

Theorem 13: Row operations do not change the row space. In particular, the
nonzero rows of rref(A) is a linearly independent set whose span is RowA.

A =





0 1 0 4
0 2 0 8
1 1 −3 2









0 1 0 4
0 0 0 0
1 0 −3 −2



 rref(A) =





1 0 −3 −2
0 1 0 4
0 0 0 0





An example to explain why row operations do not change the row space:

R2 − 2R1

R3 −R1

Take any vector in the row space, i.e. any linear combination of R1, R2, R3,
e.g. R2 +R3 = (1, 3,−3, 10).
We can rewrite it as a linear combination of the rows R′

1, R
′

2, R
′

3 of rrefA:
e.g. (1, 3,−3, 10) = R2+R3 = (R2− 2R1)+ (R3−R1)+3R1 = R′

3+R′

1+3R′

2.

R′

1

R′

2

R′

3
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Summary:

A basis for W is a linearly independent set that spans W (more next week).
• NulA=solutions to Ax = 0,
• ColA=span of columns of A,
• RowA=span of rows of A.

basis for NulA: solve Ax = 0 via the rref.
basis for ColA: pivot columns of A.
basis for RowA: nonzero rows of rref(A).

R
n

R
m

NulA
0

ColAColA
RowA

NulA,RowA are in R
n.ColA is in R

m.

NulA = Nul(rref(A)), RowA = Row(rref(A)).In general, ColA 6= Col(rref(A)).

Ax

7−→

x

0

(think about A =

[
1 1
2 2

]

.)
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Recall (week 4 §1.8) the definition of a linear transformation:
Definition: A function T : Rn → R

m is a linear transformation if:
1. T (u+ v) = T (u) + T (v) for all u,v in the domain of T ;
2. T (cu) = cT (u) for all scalars c and for all u in the domain of T .

PP222-223: Linear Transformations for Vector Spaces

Hard exercise: show that the set of all linear transformations V →W is a vector space.

Now consider a function T : V →W , where V,W are abstract vector spaces.
Because we can add and scalar-multiply in V , the left hand sides of the
equations in 1,2 make sense.
Because we can add and scalar-multiply in W , the right hand sides of the
equations in 1,2 make sense.
So we can ask if functions between abstract vector spaces are linear:
Definition: A function T : V →W is a linear transformation if:
1. T (u+ v) = T (u) + T (v) for all u,v in V ;
2. T (cu) = cT (u) for all scalars c and for all u in V .
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Definition: A function T : V →W is a linear transformation if:
1. T (u+ v) = T (u) + T (v) for all u,v in V ;
2. T (cu) = cT (u) for all scalars c and for all u in V .

Example: The differentiation function D : Pn → Pn−1 given by D(p) =
d

dt
p,

D(a0 + a1t+ a2t
2 + · · ·+ ant

n) = a1 + 2a2t+ · · ·+ nant
n−1,

is linear.

If you’ve taken a calculus class, then you already know this:

When you calculate
d

dt
(3t+ 2t2) = 3 + 2 · 2t

you’re really thinking

Method A to show that D is linear:

D(p+ q) =
d

dt
(p+ q) =

d

dt
p+

d

dt
q = D(p) +D(q); and

D(cp) =
d

dt
(cp) = c

d

dt
p = cD(p)

3
d

dt
t+ 2

d

dt
t2
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Definition: A function T : V →W is a linear transformation if:
1. T (u+ v) = T (u) + T (v) for all u,v in V ;
2. T (cu) = cT (u) for all scalars c and for all u in V .

Example: The differentiation function D : Pn → Pn−1 given by D(p) =
d

dt
p,

D(a0 + a1t+ a2t
2 + · · ·+ ant

n) = a1 + 2a2t+ · · ·+ nant
n−1,

is linear.
Method B to show that D is linear - use the formula:

D((a0 + b0) + (a1 + b1)t+ (a2 + b2)t
2 + · · ·+ (an + bn)t

n)

= (a1 + b1) + 2(a2 + b2)t+ · · ·+ n(an + bn)t
n−1

= a1 + 2a2t+ · · ·+ nant
n−1 + b1 + 2b2t+ · · ·+ nbnt

n−1

= D(a0 + a1t+ a2t
2 + · · ·+ ant

n) +D(b0 + b1t+ b2t
2 + · · ·+ bnt

n); and

D((ca0) + (ca1)t+ (ca2)t
2 + · · ·+ (can)t

n) = (ca1) + 2(ca2)t+ · · ·+ n(can)t
n−1

= c(a1 + 2a2t+ · · ·+ nant
n−1)

= cD(a0 + a1t+ a2t
2 + · · ·+ ant

n).
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Example: The “multiplication by t” function M : Pn → Pn+1 given by

M(p(t)) = tp(t),

M(a0 + a1t+ · · ·+ ant
n) = t(a0 + a1t+ · · ·+ ant

n),
is linear:

Method A:
M(p+ q) = t[(p+ q)(t)] = tp(t) + tq(t) = M(p) +M(q); and

M(cp) = t[(cp)(t)] = c[t(p(t)] = cM(p)

Method B:
M((a0 + b0) + (a1 + b1)t+ · · ·+ (an + bn)t

n)

= t((a0 + b0) + (a1 + b1)t+ · · ·+ (an + bn)t
n))

= t(a0 + a1t+ · · ·+ ant
n) + t(b0 + b1t+ · · ·+ bnt

n)

= M(a0 + a1t+ · · ·+ ant
n) +M(b0 + b1t+ · · ·+ bnt

n); and

M((ca0) + (ca1)t+ · · ·+ (can)t
n) = t((ca0) + (ca1)t+ · · ·+ (can)t

n)

= ct(a0 + a1t+ · · ·+ ant
n)

= cM(a0 + a1t+ · · ·+ ant
n).
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The concepts of kernel and range (week 4, §1.9) make sense for linear transformations
between abstract vector spaces:
Definition: The kernel of T is kerT = {v ∈ V |T (v) = 0}.
Definition: The range of T is rangeT = {w ∈ W |w = T (v) for some v ∈ V }.

Example: Consider the differentiation function D : Pn → Pn−1, given by D(p) =
d

dt
p.

kerD =
{

p ∈ Pn |
d

dt
p = 0

}

= the set of constant polynomials {a0|a0 ∈ R}.

rangeD =
{

q ∈ Pn−1 |q =
d

dt
p for some p ∈ Pn

}

. For any q ∈ Pn−1, letting

p =
∫

q dt solves q =
d

dt
p, so rangeD is all of Pn−1 (i.e. D is onto).

Exercise: what is the kernel and range of the multiplication by t function M(p) = tp(t)?

Our proof that null spaces are subspaces (p18) can be modified to show that the kernel
of a linear transformation is a subspace.
Exercise: show that the range of a linear transformation is a subspace.
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Recall from p17: to prove that a subset of Rn defined by conditions is a subspace,
we can try to show it’s a null space:

{x ∈ R
n| † }

choose A
−−−−−−−→ {x ∈ R

n|Ax = 0} = NulA.

If our subset defined by conditions is in a different vector space from R
n, then we

can similarly try to show it’s a kernel.

{x ∈ V | † }
choose T : V →?
−−−−−−−−−−−−−→ {x ∈ V |T (x) = 0} = kerT .

You will need to show that the T you choose is linear.

The second answer (p46) to this example uses this new shortcut.

Example: Let K = {p ∈ P3|p(2) = 0}, i.e. the polynomials p(t) of degree at most
3, which output 0 when we set t = 2. Show that K is a subspace of P3.

Before we answer the question, let’s make sure we understand what K is:
e.g. t− 1 is not in K because 2− 1 = 1 6= 0.
e.g. −t2 + 3t+ 2 is in K because −22 + 3 · 2 + 2 = 0.
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(p+ q)(2) = (a0 + b0) + (a1 + b1)2 + (a2 + b2)2
2 + (a3 + b3)2

3

= (a0 + a12 + a22
2 + a32

3) + (b0 + b12 + b22
2 + b32

3)

= 0 + 0 = 0

p(2) = 0,q(2) = 0 (p+ q)(2) = 0.

Example: Let K = {p ∈ P3|p(2) = 0}. Show that K is a subspace of P3.

Answer 1: Checking the axioms directly.

4. The zero polynomial (0 + 0t+ 0t2 + 0t3) is in K because
0(2) = 0 + 0 · 2 + 0 · 22 + 0 · 23 = 0.

1. We need to show that, if p,q are in K, then p+ q is in K.
Translation:

Method A: (p+ q)(2) = p(2) + q(2) = 0 + 0 = 0.

Method B: Suppose p(t) = a0+ a1t+ a2t
2+ a3t

3 so a0+ a12+ a22
2+ a32

3 = 0.

Suppose q(t) = b0 + b1t+ b2t
2 + b3t

3 so b0 + b12 + b22
2 + b32

3 = 0.

(p+ q)(t) = (a0 + b0) + (a1 + b1)t+ (a2 + b2)t
2 + (a3 + b3)t

3.

So
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Example: Let K = {p ∈ P3|p(2) = 0}. Show that K is a subspace of P3.

Answer 1: (continued): Checking the axioms directly.

6. Method A:
For p in K and any scalar c, we have (cp)(2) = c(p(2)) = c0 = 0, so cp is in K.

Method B:
Take p = a0 + a1t+ a2t

2 + a3t
3 in K, so a0 + a12 + a22

2 + a32
3 = 0. Then

cp(2) = (ca0) + (ca1)2 + (ca2)2
2 + (ca3)2

3 = c(a0 + a12 + a22
2 + a32

3) = c0 = 0,
so cp is in K.
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Can we write K as Span {p1, . . . ,pp} for some linearly independent polynomials
p1, . . . ,pp?

One idea: associate a matrix A to E2 and take a basis of NulA using the rref.
To do computations like this, we need coordinates.

Example: Let K = {p ∈ P3|p(2) = 0}. Show that K is a subspace of P3.

Answer 2: Showing that K is a kernel.
Consider the evaluation-at-2 function E2 : P3 → R given by E2(p) = p(2),

E2(a0 + a1t+ a2t
2 + a3t

3) = a0 + a12 + a22
2 + a32

3

E2 is a linear transformation because
1. For p,q in P3, we have

E2(p+ q) = (p+ q)(2) = p(2) + q(2) = E2(p) + E2(q).
2. For p in P3 and any scalar c, we have E2(cp) = (cp)(2) = c(p(2)) = cE2(p).
So E2 is a linear transformation. K is the kernel of E2, so K is a subspace.
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From the beginning of last week:
Remember from calculus the addition and scalar multiplication of polynomials:

e.g (2t2 + 1) + (−t2 + 3t+ 2) = t2 + 3t+ 3.

Is this really different from R
3?





1
0
2



+





2
3
−1



 =





3
3
1



.

e.g (−3)(−t2 + 3t+ 2) = 3t2 − 9t− 6.

(−3)





2
3
−1



 =





−6
−9
3



.

← coefficient of 1
← coefficient of t
← coefficient of t2

We want to represent abstract vectors as column vectors so we can
do calculations (e.g. row-reduction) to study linear systems (e.g.
week 7 p21) and linear transformations (e.g. week 7 p44).
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In R
n,







x1

...
xn






= x1e1 + · · ·+ xnen.

We want to represent abstract vectors as column vectors so we can do calculations
(e.g. row-reduction) to study linear systems and linear transformations.

Example: In P2, let b1 = 1,b2 = t,b3 = t2.

Then we represent a0 + a1t+ a2t
2 by





a0
a1
a2



 (see previous page).

We can copy this idea: in V , pick a special set of vectors {b1, . . . ,bn}, write each

x in V uniquely as c1b1 + · · ·+ cnbn and represent x by the column vector







c1
...

cn






.

{b1, . . . ,bn}
must span V

{b1, . . . ,bn} must be
linearly independent
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§4.3: Bases
Definition: Let W be a subspace of a vector space V . An indexed set of vectors
B = {b1, . . . ,bp} in V is a basis for W if
i B is a linearly independent set, and
ii Span {b1, . . . ,bp} = W .

The order matters:
{b1,b2} and {b2,b1}
are different bases.

Condition ii implies that b1, . . . ,bp must be in W , because Span {b1, . . . ,bp}
contains each of b1, . . . ,bp.

Every vector space V is a subspace of itself, so we can take W = V in the
definition and talk about bases for V .

i means: The only solution to x1b1 + · · ·+ xpbp = 0 is x1 = · · · = xp = 0.
ii means: W is the set of vectors of the form c1b1 + · · ·+ cpbp where c1, . . . , cp
can take any value.
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Definition: Let W be a subspace of a vector space V . An indexed set of vectors
B = {b1, . . . ,bp} in V is a basis for W if
i B is a linearly independent set, and
ii Span {b1, . . . ,bp} = W .

Example: The standard basis for R3 is {e1, e2, e3}, where

e1 =





1
0
0



 , e2 =





0
1
0



 , e3 =





0
0
1



.

To check that this is a basis:





| | |
e1 e2 e3
| | |



 =





1 0 0
0 1 0
0 0 1



 is in reduced echelon form.

The matrix has a pivot in every column, so its columns are linearly independent.
The matrix has a pivot in every row, so its columns span R

3.
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Definition: Let W be a subspace of a vector space V . An indexed set of vectors
B = {b1, . . . ,bp} in V is a basis for W if
i B is a linearly independent set, and
ii Span {b1, . . . ,bp} = W .

Example: Let v1 =





1
2
0



 ,v2 =





0
1
1



. Is {v1,v2} a basis for R3?

A basis for W is not unique: (different bases are useful in different situations, see
week 9).
Let’s look for a different basis for R3.

Answer: No, because two vectors cannot span R
3:





| |
v1 v2

| |



 =





1 0
2 1
0 1



 cannot

have a pivot in every row.
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Definition: Let W be a subspace of a vector space V . An indexed set of vectors
B = {b1, . . . ,bp} in V is a basis for W if
i B is a linearly independent set, and
ii Span {b1, . . . ,bp} = W .

Example: Let v1 =





1
2
0



 ,v2 =





0
1
1



 ,v3 =





−1
0
3



. Is {v1,v2,v3} a basis for R3?

Answer: Form the matrix A =





| | |
v1 v2 v3

| | |



 =





1 0 −1
2 1 0
0 1 3



. Because

detA = 1 6= 0, the matrix A is invertible, so (by Invertible Matrix Theorem) its
columns are linearly independent and its columns span R

3.

A basis for W is not unique: (different bases are useful in different situations, see
week 9).
Let’s look for a different basis for R3.
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Definition: Let W be a subspace of a vector space V . An indexed set of vectors
B = {b1, . . . ,bp} in V is a basis for W if
i B is a linearly independent set, and
ii Span {b1, . . . ,bp} = W .

Example: Let v1 =





1
2
0



 ,v2 =





0
1
1



 ,v3 =





1
1
0



 ,v4 =





0
0
1



. Is {v1,v2,v3,v4} a

basis for R3?

Answer: No, because four vectors in R
3 must be linearly dependent:





| | | |
v1 v2 v3 v4

| | | |



 =





1 0 1 0
2 1 1 0
0 1 0 1



 cannot have a pivot in every column.

A basis for W is not unique: (different bases are useful in different situations, see
week 9).
Let’s look for a different basis for R3.
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By the same logic as in the above examples:
Fact: {v1, . . .vp} is a basis for Rn if and only if:
• p = n (i.e. the set has exactly n vectors), and

• det





| | |
v1 . . . vn

| | |



 6= 0.

Fewer than n vectors: not enough vectors, can’t span R
n.

More than n vectors: too many vectors, linearly dependent.
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Example: The standard basis for Pn is B =
{

1, t, t2, . . . , tn
}

.

To check that this is a basis:
ii By definition of Pn, every element of Pn has the form
a0 + a1t+ a2t

2 + · · ·+ ant
n, so B spans Pn.

i To see that B is linearly independent, we show that c0 = c1 = · · · = cn = 0 is
the only solution to

Substitute t = 0: we find c0 = 0.

Differentiate, then substitute t = 0: we find c1 = 0.

Differentiate again, then substitute t = 0: we find c2 = 0.

Repeating many times, we find c0 = c1 = · · · = cn = 0.

(the zero function)c0 + c1t+ c2t
2 + · · ·+ cnt

n = 0.

Once we have the standard basis of Pn, it will be easier to check if other sets are
bases of Pn, using coordinates (later, p14).

Advanced exercise: what do you think is the standard basis for Mm×n?
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One way to make a basis for V is to start with a set that spans V .

Theorem 5: Spanning Set Theorem: If V = Span {v1, . . . ,vp}, then some subset
of {v1, . . . ,vp} is a basis for V .

Proof: basically, the idea of the casting-out algorithm (week 7 p29-35) works in
abstract vector spaces too.
• If {v1, . . . ,vp} is linearly independent, it is a basis for V .
• If {v1, . . . ,vp} is linearly dependent, then one of the vis is a linear combination
of the others. Removing this vi from the set still gives a set that spans V .
Continue removing vectors in this way until the remaining vectors are linearly
independent.

Example: P2 = Span
{

5, 3 + t, 1 + 2t2, 4 + 2t− 4t2
}

, but this set is not linearly
independent because 4 + 2t− 4t2 is a linear combination of the other polynomials:
4 + 2t− 4t2 = 2(3 + t)− 2(1 + 2t2). So remove 4 + 2t− 4t2 to get the set
{

5, 3 + t, 1 + 2t2
}

, which is in fact a basis (we can show this with coordinates,
p14-15).
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PP 234, 238-240 (§4.4), 307-308 (§5.4): Coordinates
Recall (p2) that our motivation for finding a basis is because we want to write each
vector x as c1b1 + · · ·+ cpbp in a unique way. Let’s show that this is indeed possible.

Theorem 7: Unique Representation Theorem: Let B = {b1, . . . ,bn} be a
basis for a vector space V . Then for each x in V , there exists a unique set of
scalars c1, . . . , cn such that

Proof:
Since B spans V , there exists scalars c1, . . . , cn such that the above equation holds.
Suppose x has another representation

for some scalars d1, . . . , dn. Then

Because B is linearly independent, all the weights in this equation must be zero, i.e.
(c1 − d1) = · · · = (cn − dn) = 0. So c1 = d1, . . . , cn = dn.

x = c1b1 + · · ·+ cnbn.

x = d1b1 + · · ·+ dnbn.

0 = x− x = (c1 − d1)b1 + · · ·+ (cn − dn)bn.
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Definition: Let B = {b1, . . . ,bn} be a basis for V . Then, for any x in V , the
coordinates of x relative to B, or the B-coordinates of x, are the unique weights
c1, . . . , cn such that

x = c1b1 + · · ·+ cnbn.

The vector in R
n

[x]B =







c1
...
cn







is the coordinate vector of x relative to B, or the B-coordinate vector of x.

Because of the Unique Representation Theorem, we can make the following definition:

Example: Let B =
{

1, t, t2, t3
}

be the standard basis for P3. Then the coordinate

vector of an arbitrary polynomial is [a0 + a1t+ a2t
2 + a3t

3]B =









a0
a1
a2
a3









.
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Why are coordinate vectors useful?

Because of the Unique Representation Theorem, the function V to R
n given by

x 7→ [x]B (e.g. a0 + a1t+ a2t
2 + a3t

3 7→









a0
a1
a2
a3









) is linear, one-to-one and onto.

Definition: A linear transformation T : V →W that is both one-to-one and
onto is called an isomorphism. We say V and W are isomorphic.

This means that, although the notation and terminology for V and W are
different, the two spaces behave the same as vector spaces. Every vector space
calculation in V is accurately reproduced in W , and vice versa.

Important consequence: if V has a basis of n vectors, then V and R
n are

isomorphic, so we can solve problems about V (e.g. span, linear independence)
by working in R

n.
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If V has a basis of n vectors, then V and R
n are isomorphic, so we can solve

problems about V (e.g. span, linear independence) by working in R
n.

Example: Is the set of polynomials
{

1, 2− t, (2− t)2, (2− t)3
}

linearly independent?

Answer: The coordinates of these polynomials relative to the standard basis of P3 are

The set of polynomials is linearly independent if and only if their coordinate vectors are
linearly independent (continued on next page).

[1]B =









1
0
0
0









, [(2− t)2]B = [4− 4t+ t2]B =









4
−4
1
0









,

[2− t]B =









2
−1
0
0









, [(2− t)3]B = [(8− 12t+ 6t2 − t3]B =









8
−12

6
−1








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Example: Is the set of polynomials
{

1, 2− t, (2− t)2, (2− t)3
}

linearly independent?

Answer: (continued). The matrix








1 2 4 8
0 −1 −4 −12
0 0 1 6
0 0 0 −1









is in echelon form and has a pivot in every column, so its columns are linearly
independent in R

4. So the polynomials are linearly independent.

(Alternative: this matrix is upper triangular so its determinant is the product of the
diagonal entries 1 · −1 · 1 · −1 = 1 6= 0, so the matrix is invertible, and by the
Invertible Matrix Theorem, its columns are linearly independent in R

4.)

In fact the polynomials form a basis: IMT says that the columns of the above matrix
also span R

4, so the polynomials span P3.

Advanced exercise: if pi has degree exactly i, then {p0,p1, . . . ,pn} is a basis for Pn.
(This idea is how I usually prove that a set is a basis in my research work.)



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 8, Page 16 of 23

Harder example: (in preparation for week 9, change of coordinates) Let
F =

{

1, 2− t, (2− t)2, (2− t)3
}

. We just showed that F is a basis. So if the

F-coordinates of a polynomial p is [p]F =









2
4
0

−1









, then what is p?

Answer:

[p]F =









2
4
0

−1









means p = 2 + 4(2− t) + 0(2− t)2 − 1(2− t)3 = 2 + 8t− 6t2 + t3.

If E = {e1, . . . , en} is the standard basis for Rn, then

x =







x1

...
xn






= x1e1 + · · ·+ xnen, so [x]E =







x1

...
xn






= x.
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Remember from week 4 §1.9: Every linear transformation T : Rn → R
m is a matrix

transformation T (x) = Ax, where

A =





| | |
T (e1) . . . T (en)

| | |



 (standard matrix of T ).

A reminder why T (x) = Ax:

T (x) = T (x1e1+· · ·+xnen) = x1T (e1)+· · ·+xnT (en) =





| | |
T (e1) . . . T (en)

| | |











x1

...
xn






.

If V has a basis of n vectors, then V and R
n are isomorphic, so we can solve

problems about V (e.g. span, linear independence) by working in R
n.

What about problems concerning linear transformations T : V → W?

apply T to ith basis vector, put the
coordinates of the result into column i
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Definition: If V is a vector space with basis B = {b1, . . . ,bn} and T : V → V

is a linear transformation, then the matrix for T relative to B is

(so the standard matrix of T is [T ]
E←E

,

where E is the standard basis of Rn.)
[T ]
B←B

=





| | |
[T (b1)]B . . . [T (bn)]B

| | |



 .

We do a similar calculation in an abstract vector space V , with basis B = {b1, . . . ,bn}.
Suppose T : V → V is a linear transformation, and v ∈ V is v = c1b1 + · · ·+ cnbn:

T (v) = T (c1b1 + · · ·+ cnbn) = c1T (b1) + · · ·+ cnT (bn)

[T (v)]B = [T (c1b1 + · · ·+ cnbn)]B = c1[T (b1)]B + · · ·+ cn[T (bn)]B

=





| | |
[T (b1)]B . . . [T (bn)]B

| | |











c1
...
cn







=





| | |
[T (b1)]B . . . [T (bn)]B

| | |



 [v]B.



DEFINITION:If V is a vector space with basis B = {b1, . . . ,bn} and
T : V → V is a linear transformation, then the matrix for T relative to B is

[T ]
B←B

=


| | |

[T (b1)]B . . . [T (bn)]B

| | |

 .

EXAMPLE:Let D : P2 → P2 be the differentiation function

D(a0 + a1t+ a2t
2) =

d

dt
(a0 + a1t+ a2t

2) = a1 + 2a2t.

Work in the standard basis of P2: b1 = 1,b2 = t,b3 = t2.

D(b1) = D(b2) = D(b3) =

[D(b1)]B =


 [D(b2)]B =


 [D(b3)]B =




So

[D]
B←B

=

1
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The matrix [T ]
B←B

is useful because
[T (x)]B = [T ]

B←B

[x]B,

so we can solve T (x) = y by row-reducing
[

[T ]
B←B

∣

∣

∣

[y]B
]

.

Example: Let D : P2 → P2 be the differentiation function D(p) = d

dt
p as on the

previous page. Here is an example of equation (∗) for x = 2 + 3t− t2.

D(2 + 3t− t2) =
d

dt
(2 + 3t− t2) = 3− 2t

[D]
B←B





2
3
−1



 =





0 1 0
0 0 2
0 0 0









2
3
−1



 =





3
−2
0



 .

(∗)

Some other things about D that we can learn from the matrix [D]
B←B

:

• We can solve the differential equation d

dt
p = 1− 3t by row-reducing





0 1 0 1
0 0 2 −3
0 0 0 0



.

• [D]
B←B

is in echelon form, and it does not have a pivot in every column, so D is not

one-to-one (which you know from calculus - this is why indefinite integrals have +C).
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As you may have guessed from the notation [T ]
B←B

, it is possible to define similar

matrices [T ]
C←B

using different “input” and “output” bases B and C. This is useful

when T : V → W has different domain and codomain. But we will not consider this

more general case.

Note that the textbook writes [T ]B for [T ]
B←B

. You need to understand this notation in

homework and exams.

Warning: if x is a vector , then [x]B is a column vector.

if T is a linear transformation, then [T ]B is a matrix.

i.e. the notation [ ]B means a different thing depending on what is inside the bracket.
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Basis and coordinates for subspaces:

Example: Let W =











a

0
b





∣

∣

∣

∣

∣

∣

a, b ∈ R







. We showed (week 7 p14) that W is a

subspace of R3 because W = Span











1
0
0



 ,





0
0
1











. Since











1
0
0



 ,





0
0
1











is

furthermore linearly independent, it is a basis for W .

Because





a

0
b



 = a





1
0
0



+ b





0
0
1



, the coordinate vector of





a

0
b



, relative to the basis











1
0
0



 ,





0
0
1











, is

[

a

b

]

. So





a

0
b



 7→

[

a

b

]

is an isomorphism from W to R
2.
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Coordinates for subspaces (e.g. planes in R
3) are useful as they allow us to

represent points in the subspace with fewer numbers (e.g. with 2 numbers
instead of 3 numbers).

In this picture (p239 of textbook,
example 7 in §4.4), B = {v1,v2}
is a basis for a plane. The basis
allows us to draw a coordinate
grid on the plane.

The B-coordinate vector of x is

[x]B =

[

2
3

]

. This coordinate

vector describes the location of x
relative to this coordinate grid.



An “abstract” example of coordinates:
EXAMPLE: Let B = {b1,b2,b3} be a basis for V .

1. What is the B-coordinate vector of b1 + b2?

Suppose T : V → V is a linear transformation satisfying

T (b1) = b1 + b2, T (b2) = b1 − 2b3, T (b3) = b3.

2. Find the matrix [T ]
B←B

for T relative to B.

3. Find T (b1 + b2) .
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§4.5: Dimension
From last week:
• Given a vector space V , a basis for V is a linearly independent set that spans V .
• If B = {b1, . . . ,bn} is a basis for V , then the B-coordinates of x are the weights

ci in the linear combination x = c1b1 + · · ·+ cpbp.
• Coordinate vectors allow us to test for spanning / linear independence, to solve

linear systems, and to test for one-to-one / onto by working in R
n.

Another example of this idea:
Theorem: Let B = {b1, . . . ,bn} be a basis for a vector space V .
i Any set in V containing more than n vectors must be linearly dependent
(theorem 9 in textbook).

ii Any set in V containing fewer than n vectors cannot span V .

We prove this (next page) using coordinate vectors, and the fact that we already
know it is true for V = R

n.
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Theorem: Let B = {b1, . . . ,bn} be a basis for a vector space V .
i Any set in V containing more than n vectors must be linearly dependent.
ii Any set in V containing fewer than n vectors cannot span V .

Proof: Let our set of vectors in V be {u1, . . . ,up}, and consider the matrix

A =





| | |
[u1]B . . . [up]B
| | |



 ,

which has p columns and n rows.
i If p > n, then rref(A) cannot have a pivot in every column, so {[u1]B, . . . , [up]B}
is linearly dependent in R

n, so {u1, . . . ,up} is linearly dependent in V .
ii If p < n, then rref(A) cannot have a pivot in every row, so the set of coordinate
vectors {[u1]B, . . . , [up]B} cannot span R

n, so {u1, . . . ,up} cannot span V .
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Theorem: Let B = {b1, . . . ,bn} be a basis for a vector space V .
i Any set in V containing more than n vectors must be linearly dependent.
ii Any set in V containing fewer than n vectors cannot span V .

As a consequence:
Theorem 10: Every basis has the same size: If a vector space V has a basis of n
vectors, then every basis of V must consist of exactly n vectors.

So the following definition makes sense:

Definition: Let V be a vector space.
• If V is spanned by a finite set, then V is finite-dimensional .

The dimension of V , written dimV , is the number of vectors in a basis for V .
(This number is finite because of the spanning set theorem.)

• If V is not spanned by a finite set, then V is infinite-dimensional .

Note that the definition does not involve “infinite sets”.

Definition: (or convention) The dimension of the zero vector space {0} is 0.
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Definition: The dimension of V is the number of vectors in a basis for V .

Examples:
• The standard basis for Rn is {e1, . . . , en}, so dimR

n = n.
• The standard basis for Pn is {1, t, . . . , tn}, so dimPn = n+ 1.
• Exercise: Show that dimMm×n = mn.

Example: Let W =











a

0

b





∣

∣

∣

∣

∣

∣

a, b,∈ R







. We showed (week 8 p20) that a basis for

W is











1

0

0



 ,





0

0

1











. So dimW=2.

Why is it useful to know the dimension of W? One example: From the theorem
on p2, we know that any set of 3 vectors in W must be linearly dependent,
because 3 > dimW .
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Example: We classify the subspaces of R3 by dimension:

• 0-dimensional: only the zero subspace {0}.
• 1-dimensional, i.e. Span {v}: lines through the origin.

• 2-dimensional, i.e. Span {u,v} where {u,v} is linearly independent: planes

through the origin.

• 3-dimensional: by Invertible Matrix Theorem, 3 linearly independent vectors in

R
3 spans R3, so the only 3-dimensional subspace of R3 is R3 itself.

The theorem on the next page shows that other dimensions are not possible.
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Here is a counterpart to the spanning set theorem (week 8 p10):

Theorem 11: Linearly Independent Set Theorem: Let W be a subspace of a
finite-dimensional vector space V . If {v1, . . . ,vp} is a linearly independent set in
W , we can find vp+1, . . . ,vn so that {v1, . . . ,vn} is a basis for W .

Proof:
• If Span {v1, . . . ,vp} = W , then {v1, . . . ,vp} is a basis for W .
• Otherwise {v1, . . . ,vp} does not span W , so there is a vector vp+1 in W that

is not in Span {v1, . . . ,vp}. Adding vp+1 to the set still gives a linearly
independent set. Continue adding vectors in this way until the set spans W .
This process must stop after at most dimV − p additions, because a set of
more than dimV elements must be linearly dependent.

The above logic proves something stronger:
Theorem 11 part 2: Subspaces of Finite-Dimensional Spaces: If W is a
subspace of a finite-dimensional vector space V , then W is also finite-dimensional
and dimW ≤ dimV .
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Because of the spanning set theorem and linearly independent set theorem:

Theorem 12: Basis Theorem: If V is a p-dimensional vector space, then
i Any linearly independent set of exactly p elements in V is a basis for V .
ii Any set of exactly p elements that span V is a basis for V .

In other words, to prove that B is a basis of a p-dimensional vector space V , we
only need to show two of the following three things (the third will be automatic):
• B contains exactly p vectors in V ;
• B is linearly independent;
• SpanB = V .

}

If V is a subspace of U , these two statements
are usually easier to check because we can
work in the big space U (see p9, p14, ex#18).

Proof:
i By the linearly independent set theorem, we can add elements to any linearly
independent set in V to obtain a basis for V . But that larger set must contain
exactly dimV = p elements. So our starting set must already be a basis.

ii By the spanning set theorem, we can remove elements from any set that spans
V to obtain a basis for V . But that smaller set must contain exactly
dimV = p elements. So our starting set must already be a basis.
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Summary:

• If V is spanned by a finite set, then V is finite-dimensional and dimV is the
number of vectors in any basis for V .

• If V is not spanned by a finite set, then V is infinite-dimensional.

• If {v1, . . . ,vn} spans V , then some subset is a basis for V (week 8 p10).
• If {v1, . . . ,vn} is linearly independent and V is finite-dimensional, then it can

be expanded to a basis for V (p4).

If dimV = p (so V and R
p are isomorphic):

• Any set of more than p vectors in V is linearly dependent (p2).
• Any set of fewer than p vectors in V cannot span V (p2).
• Any linearly independent set of exactly p elements in V is a basis for V (p7).
• Any set of exactly p elements that span V is a basis for V (p7).
To prove that B is a basis of V , show two of the following three things:
• B contains exactly p vectors in V ;
• B is linearly independent;
• SpanB = V .
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The basis theorem is useful for finding bases of subspaces:

Example:

Let W = Span























1

0

0

0









,









0

0

1

0









,









0

0

0

1























. Is B =























1

0

0

3









,









2

0

0

5









,









3

0

1

2























a basis for W?

Answer: We are given that W = Span {e1, e3, e4} and {e1, e3, e4} is a linearly

independent set, so {e1, e3, e4} is a basis for W , and so dimW = 3.

The vectors in B are all in W , and B consists of exactly 3 vectors, so it’s enough

to check whether B is linearly independent.

Row reduction:









1 2 3

0 0 0

0 0 1

3 5 2









−−−−−→









1 2 3

0 0 0

0 0 1

0 −1 −7









−→









1 2 3

0 −1 −7

0 0 1

0 0 0









has a pivot

in each column, so B is linearly independent, and is therefore a basis.

Note that we never had to work in W , only in R
4.

R4 − 3R1

R4

R
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§4.6: Rank
Next we look at how the idea of dimension can help us answer questions about

existence and uniqueness of solutions to linear systems.

Definition: The rank of a matrix A is the dimension of its column space.

The nullity of a matrix A is the dimension of its null space.

Example: Let A =

[

5 −3 10
7 2 14

]

, rref(A) =

[

1 0 1/2
0 1 0

]

.

A basis for ColA is

{[

5
7

]

,

[

−3
2

]}

A basis for NulA is











−1/2
0
1











.

A basis for RowA is {(1, 0, 1/2), (0, 1, 0)}.
So rankA = 2, nullityA = 1.

←− one vector per pivot

←− one vector per free variable

←− one vector per pivot

So rankA+ nullityA =?
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Theorem 14:
Rank Theorem: rankA = dimColA = dimRowA = number of pivots in rref(A).

Rank-Nullity Theorem: For an m× n matrix A,

rankA+ nullityA = n , the number of columns.

Proof: From our algorithms for bases of ColA and NulA (see week 7 slides):
rankA = number of pivots in rref(A) = number of basic variables,
nullityA = number of free variables.
Each variable is either basic or free, and the total number of variables is n, the
number of columns.

An application of the Rank-Nullity theorem:
Example: Suppose a homogeneous system of 10 equations in 12 variables has a
solution set that is spanned by two linearly independent vectors (i.e. 2 free variables).
Then the nullity of this system is 2, so the rank is 12− 2 = 10. So this system has
10 pivots. Since there are ten equations, there must be a pivot in every row, so any
nonhomogeneous system with the same coefficients always has a solution.

Using our new ideas of dimension, we can add more statements to the Existence
theorem, the Uniqueness theorem, and the Invertible Matrix Theorem:
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Theorem 8: Invertible Matrix Theorem (IMT): For a square n× n matrix A,
the following are equivalent:

A has a pivot position in
every row.

Ax = b has at least one
solution for each b in R

n.

The columns of A span
R

n.

The linear transformation
x 7→ Ax is onto.

There is a matrix D such
that AD = In.

ColA = R
n.

rankA = n.

A has a pivot position in
every column.

Ax = 0 has only the
trivial solution.

The columns of A are
linearly independent.

The linear transformation
x 7→ Ax is one-to-one.

There is a matrix C such
that CA = In.

NulA = {0}.

nullityA = 0.

detA 6= 0.

rref(A) = In.

Ax = b has a unique
solution for each b in R

n.

The columns of A form a
basis for Rn.

The linear transformation
x 7→ Ax is an invertible
function.

A is an invertible matrix.
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Advanced application of the Rank-Nullity Theorem and the Basis Theorem:

Redo Example: (p10) Let A =

[

5 −3 10

7 2 14

]

. Find a basis for NulA and ColA.

Answer: (a clever trick without any row-reduction)

• Observe that 2

[

5

7

]

=

[

10

14

]

, so





2

0

−1



 is a solution to Ax = 0. So nullityA ≥ 1.

• The first two columns of A are linearly independent (not multiples of each other),

so

{[

5

7

]

,

[

−3

2

]}

is a linearly independent set in ColA, so rankA ≥ 2.

• But rankA+ nullityA = 3, so in fact rankA = 2 and nullityA = 1, and, by the
Basis Theorem, the linearly independent sets we found above are bases:

so











2

0

−1











is a basis for NulA,

{[

5

7

]

,

[

−3

2

]}

is a basis for ColA.

So for a general m× n matrix, it’s enough to find k linearly independent vectors in
NulA and n− k linearly independent vectors in ColA.
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The Rank-Nullity theorem also holds for linear transformations T : V → W whenever V
is finite-dimensional (to prove it yourself, work through optional q8 of homework 5):

dim range of T + dim kernel of T = dim domain of T.

Advanced application:
Example: Find a basis for K = {p ∈ P3|p(2) = 0}, i.e. polynomials p(t) of degree at
most 3 with p(2) = 0.
Answer: Remember (week 7 p46) that K is the kernel of the evaluation-at-2 function
E2 : P3 → R given by E2(p) = p(2),

E2(a0 + a1t+ a2t
2 + a3t

3) = a0 + a12 + a22
2 + a32

3.

range(E2) = R, because, for each c ∈ R, the polynomial p = c satisfies E2(p) = c.
So dimK = dim(domainE2)− dim(rangeE2) = dimP3 − dimR = 4− 1 = 3.
Now B =

{

(2− t), (2− t)2, (2− t)3
}

is a subset of K, and is linearly independent
(check with coordinate vectors relative to the standard basis of P3, or because these
three polynomials have different degrees - see week 8 p14-15). Since B contains exactly
3 = dimK vectors, it is a basis for K.

rankT nullityT



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 9, Page 1 of 20

§4.4, 4.7, 5.4: Change of Basis
Let B = {b1, . . . ,bn} be a basis for V . Remember:

• The B-coordinate vector of x is [x]B =






c1
...
cn




 where x = c1b1 + · · ·+ cnbn.

• The matrix for a linear transformation T : V → V relative to B is

[T ]
B←B

(or [T ]B) =





| | |
[T (b1)]B . . . [T (bn)]B

| | |



.

A basis for this plane in R
3 allows us to draw a

coordinate grid on the plane. The coordinate
vectors then describe the location of points on this
plane relative to this coordinate grid (e.g. 2 steps
in v1 direction, 3 steps in v2 direction.)

[x]B =

[
2
3

]
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Although we already have the standard coordinate grid on R
n, some computations

are much faster and more accurate in a different basis i.e. using a different
coordinate grid (see also p18-20):

Example: Find the image of the point (5, 0) under reflection about the line y = 2x.

Horizontal and vertical grid lines are not
useful for this problem because y = 2x is
not horizontal nor vertical.

It is more useful to work with lines
parallel and perpendicular to y = 2x.
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Important questions:
i how are x and [x]B related (p4-7, §4.4 in textbook);
ii how are [x]B and [x]F related for two bases B and F (p8-11, §4.7);
iii how are the standard matrix of T and the matrix [T ]B (or [T ]

B←B

) related (p12-16, §5.4).

standard coordinate grid B-coordinate grid

x =

[
1
6

]

[x]B =

[
−2
3

]

Another example of two coordinate grids (note that the lines don’t have to be
perpendicular):



Changing from any basis to the standard basis of Rn

EXAMPLE: (see the picture on p3) Let b1 =

1
0

 ,b2 =

1
2

 and let

B = {b1,b2} be a basis of R2.

a. If [x]B =

−2
3

, then what is x?

b. If [v]B =

c1
c2

, then what is v?

Solution: (a) Use the definition of coordinates:

[x]B =

−2
3

means that x = b1 + b2 =

(b) Use the definition of coordinates:

[v]B =

c1
c2

 means that v =

In general, if B = {b1, . . . ,bn} is a basis for Rn, and [x]B =


c1
...

cn

, then

x =

______ ______

i.e.

where P is called the change-of-coordinates matrix from B to the
E←B

standard basis (PB in textbook).



In the opposite direction
Changing from the standard basis to any other basis of Rn

EXAMPLE: (see the picture on p3) Let b1 =

1
0

 ,b2 =

1
2

 and let

B = {b1,b2} be a basis of R2.

a. If x =

1
6

, then what are its B-coordinates [x]B?

b. If v =

v1
v2

, then what are its B-coordinates [v]B?

Solution: (a) Suppose [x]B =

c1
c2

. This means that

1
6

 = x =

So (c1, c2) is the solution to the linear system

1 1 1

0 2 6

.

Row reduction:

1 0 −2
0 1 3


So [x]B =

(b) The B-coordinate vector

c1
c2

 of v satisfies v = c1b1+c2b2 =



c1
c2

.

So [v]B is the solution to

|

|
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In general, if B = {b1, . . . ,bn} is a basis for Rn, and v is any vector in R
n, then

[v]B is a solution to





| | |
b1 . . . bn

| | |



x = v.

Because B is a basis, the columns of P
E←B

are linearly independent, so by the Invertible

Matrix Theorem, P
E←B

is invertible, and the unique solution to P
E←B

x = v is

[v]B =





| | |
b1 . . . bn

| | |





−1

v.

So we can write [v]B = P
B←E

v, where P
B←E

, the change-of-coordinates matrix from the

standard basis to B, satisfies P
B←E

= P
E←B

−1.

Check with previous example: P
E←B

−1
x =

[
1 1
0 2

]−1 [
1
6

]

= 1

2

[
2 −1

−0 1

] [
1
6

]

=

[
−2
3

]

.

This matrix is P
E←B
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A very common mistake is to get the direction wrong:

Does multiplication by





| | |
b1 . . . bn

| | |



 change from standard coordinates

to B-coordinates, or from B-coordinates to standard coordinates?

Don’t memorise the formulas. Instead, remember the definition of coordinates:

[x]B =






c1
...
cn




means x = c1b1 + · · ·+ cnbn =





| | |
b1 . . . bn

| | |



 [x]B

and you won’t go wrong.
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ii: Changing between two non-standard bases:

Example: As before, b1 =

[
1
0

]

,b2 =

[
1
2

]

and B = {b1,b2}.

Another basis: f1 =

[
1
1

]

, f2 =

[
0
1

]

and F = {f1, f2}.

If [x]B =

[
−2
3

]

, then what are its F-coordinates [x]F?

Answer 1: B to standard to F - works only in R
n, in general easiest to calculate.

[x]B =

[
−2
3

]

means x = −2b1 + 3b2 = −2

[
1
0

]

+ 3

[
1
2

]

=

[
1
6

]

.

So if [x]F =

[
d1
d2

]

, then d1

[
1
1

]

+ d2

[
0
1

]

=

[
1
6

]

.

Row-reducing

[
1 0 1
1 1 6

]

shows d1 = 1, d2 = 5 so [x]F =

[
1
5

]

.

In other words, x = P
E←B

[x]B and [x]F = P
F←E

x, so [x]F = P
F←E

P
E←B

[x]B
(
= P−1

F
PB[x]B

)
.
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Answer 2: A different view that works for abstract vector spaces (without
reference to a standard basis) - important theoretically, but may be hard to
calculate for general examples in R

n.

[x]B =

[
−2
3

]

means x = −2b1 + 3b2.

So [x]F = [−2b1 + 3b2]F = −2[b1]F + 3[b2]F =





| |
[b1]F [b2]F

| |





[
−2
3

]

.

because x 7→ [x]F is an isomorphism, so every vector space
calculation is accurately reproduced using coordinates.

This step can be hard to
calculate if the bi are not “easy”
linear combinations of the fi. But
if you need to change bases in a
practical application, the bases
are probably “nicely” related.

}

b1 =

[
1
0

]

=

[
1
1

]

−

[
0
1

]

= f1 − f2 so [b1]F =

[
1

−1

]

.

b2 =

[
1
2

]

=

[
1
1

]

+

[
0
1

]

= f1 + f2 so [b2]F =

[
1
1

]

.

So [x]F =

[
1 1

−1 1

] [
−2
3

]

=

[
1
5

]

.
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Another way to say this: [x]F = P
F←B

[x]B where P
F←B

=





| | |
[b1]F . . . [bn]F

| | |



 is

the change-of-coordinates matrix from B to F .

A tip to get the direction correct:

[x]F = P
F←B

[x]B
︸ ︷︷ ︸

A F-coordinate vector

a linear combination of columns
of P
F←B

, so these columns should

be F-coordinate vectors

Theorem 15: Change of Basis: Let B = {b1, . . . ,bn} and F = {f1, . . . , fn}
be two bases of a vector space V . Then, for all x in V ,

[x]F =





| | |
[b1]F . . . [bn]F

| | |



 [x]B.
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Properties of the change-of-coordinates matrix P
F←B

=





| | |
[b1]F . . . [bn]F

| | |



:

• P
B←F

= P
F←B

−1.

• In the special case that V is Rn and F is the standard basis E = {e1, . . . en},

then the above formula says P
E←B

=





| | |
[b1]E . . . [bn]E
| | |



 =





| | |
b1 . . . bn

| | |



,

because [bi]E = bi. So this agrees with what we found earlier (part i, p4).

• If V is Rn, then P
F←B

= P
F←E

P
E←B

= P−1
F

PB (see p8).

Theorem 15: Change of Basis: Let B = {b1, . . . ,bn} and F = {f1, . . . , fn}
be two bases of a vector space V . Then, for all x in V ,

[x]F =





| | |
[b1]F . . . [bn]F

| | |



 [x]B.
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iii: Change of coordinates and linear transformations:

Recall our problem from the start of this week’s notes:
Example: Find the image of the point (5, 0) under reflection about the line y = 2x.

An efficient solution:
1. Measure the perpendicular distance

from (5, 0) to the line;
2. The image of (5, 0) is the point that

is the same distance away on the
other side of the line;

3. Read off the coordinates of this
point: (−3, 4).
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The previous solution in the language of coordinates:

Let b1 =

[

1
2

]

, b2 =

[

2
−1

]

and work in the basis B = {b1,b2}.

Let T be reflection about the line y = 2x, and x =

[

5
0

]

.

So we want T (x).

b1

b2

x

In terms of matrix multiplication:

Multiply by [T ]
B←B

Multiply by P
E←B

T (x)

1. [x]B =

[

1
2

]

x x

2. [T (x)]B =

[

1
−2

]

3. T (x) =

[

−3
4

]

Multiply by P
B←E

T (x)
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The 3-step solution above shows that T (x) = P
E←B

[T ]
B←B

P
B←E

x.

Write [T ]
E←E

for the standard matrix of T . Then T (x) = [T ]
E←E

x, so the equation

[T ]
E←E

x = P
E←B

[T ]
B←B

P
B←E

x is true for all x. So the matrices on the two sides must be equal

(e.g. letting x = ei shows that each column of the matrices must be equal)

[T ]
E←E

= P
E←B

[T ]
B←B

P
B←E

.

This equation is useful because, for geometric linear
transformations T , it is often easier to find [T ]

B←B

for some

“natural” basis B than to find the standard matrix [T ]
E←E

.

E.g. in our example of reflection in y = 2x:

y = 2x

b1

b2

[
1
2

]

is on the line y = 2x, so it is unchanged by the reflection: T

([
1
2

])

=

[
1
2

]

.
[

2
−1

]

is perpendicular to y = 2x, so its image is its negative: T

([
2

−1

])

=

[
−2
1

]

.
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A different picture to understand [T ]
E←E

= P
E←B

[T ]
B←B

P
B←E

:

Because P
E←B

= PB and P
B←E

= P−1
B

:

Multiply both sides by P−1
B

on the left
and by PB on the right:

These two equations are hard to remember (“where does the inverse go?”). Instead,
remember [T ]

E←E

= P
E←B

[T ]
B←B

P
B←E

(which works for all vector spaces, not just Rn).

B-coordinates

Standard coordinates

[x]B = P
B←E

x7→

P
E←B

[x]B = x

[x]B

7→

x

[T ]
B←B

[x]B

7−→

[x]B

[T ]
E←E

x

7−→

x

[T ]
E←E

= PB [T ]
B←B

P−1
B

P−1
B

[T ]
E←E

PB = [T ]
B←B



EXAMPLE: Let b1 =

1
2

,b2 =

 2

−1

and let B = {b1,b2} be a basis of R2.

Suppose T is a linear transformation satisfying T (b1) = b1 and T (b2) = −b2.
Find [T ]

E←E
, the standard matrix of T .

Solution: We will use change of coordinates:

[T ]
E←E

=

Now we need to find the matrices on the right hand side.

• Find [T ]
B←B

from the information
T (b1) = b1

T (b2) = −b2

[T ]
B←B

=

• Find the change-of-coordinate matrices, using the definition of coordinates:

[x]B =

c1
c2

means x = =



c1
c2

 =


 [x]B.

Putting it all together:

[T ]
E←E

=

=










=










Check that our answer satisfies the conditions given in the question:

T (b1) = [T ]
E←E

b1 =

T (b2) = [T ]
E←E

b2 =

1
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Remember
[T ]
E←E

= P
E←B

[T ]
B←B

P
B←E

= P
E←B

[T ]
B←B

P
E←B

−1.

This motivates the following definition:

Definition: Two square matrices A and D are similar if there is an invertible
matrix P such that A = PDP−1.

Similar matrices represent the same linear transformation in different bases.

Similar matrices have the same determinant and the same rank, because the
signed volume scaling factor and the dimension of the image are
coordinate-independent properties of the linear transformation. (Exercise: prove
that detD = det(PDP−1) using the multiplicative property of determinants.)

HKBU Math 2207 Linear Algebra Semester 2 2020, Week 9, Page 18 of 20

Why is change of basis important?

Example: If x, y are the prices of two stocks on a particular day, then their prices
the next day are respectively 1

2
y and −x+ 3

2
y. How are the prices after many

days related to the prices today?

Answer: Let T : R2 → R
2 be the function representing the changes in stock

prices from one day to the next, i.e. T

([
x

y

])

=

[
1

2
y

−x+ 3

2
y

]

. We are interested

in T k for large k. (You will NOT be required to do this step.)

T is a linear transformation; its standard matrix is [T ]
E←E

=




0 1

2

−1 3

2



.

Calculating




0 1

2

−1 3

2





k

by direct matrix multiplication will take a long time.
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Answer: (continued) Let b1 =

[
1
1

]

,b2 =

[
1
2

]

and B = {b1,b2}.

T (b1) =




0 1

2

−1 3

2








1

1



 =





1

2

1

2



 = 1

2
b1, T (b2) =




0 1

2

−1 3

2








1

2



 =




1

2



 = b2,

so [T ]
B←B

=





| |
[T (b1)]B [T (b2)]B

| |



=





1

2
0

0 1



. Use [T ]
E←E

= P
E←B

[T ]
B←B

P
B←E

= P
E←B

[T ]
B←B

P
E←B

−1:

[T ]
E←E

k
=

(

P
E←B

[T ]
B←B

P
E←B

−1

)k

=

(

P
E←B

[T ]
B←B

P
E←B

−1

)(

P
E←B

[T ]
B←B

P
E←B

−1

)

. . . . . . . . .

(

P
E←B

[T ]
B←B

P
E←B

−1

)

= P
E←B

[T ]
B←B

k
P
E←B

−1

=

[
1 1
1 2

] [
1

2
0

0 1

]k [
1 1
1 2

]−1

=

[
1 1
1 2

] [
1

2

k
0

0 1k

] [
1 1
1 2

]−1

=

[

−1 + 1

2

k−1
1− 1

2

k

−2 + 1

2

k−1
2− 1

2

k

]

.

HKBU Math 2207 Linear Algebra Semester 2 2020, Week 9, Page 20 of 20

So [T ]
E←E

k
=

[

−1 + 1

2

k−1
1− 1

2

k

−2 + 1

2

k−1
2− 1

2

k

]

. When k is very large, this is very close to

[
−1 1
−2 2

]

.

So essentially the stock prices after many days is −x+ y and −2x+2y, where x, y are
the prices today. (In particular, the prices stabilise, which was not clear from [T ]

E←E

.)

The important points in this example:
• We have a linear transformation T : R2 → R

2 and we want to find T k for large k.
• We find a basis B = {b1,b2} where T (b1) = λ1b1 and T (b2) = λ2b2 for some

scalars λ1, λ2. (In the example, λ1 = 1

2
, λ2 = 1.)

• Relative to the basis B, the matrix for T is a diagonal matrix [T ]
B←B

=

[
λ1 0
0 λ2

]

.

• It is easy to compute with [T ]B, and we can then use change of coordinates to
transfer the result to the standard matrix [T ]

E←E

.

Next week (§5): does a “magic” basis like this always exist, and how to find it?
(Don’t worry: you can do many of the computations in §5 without fully understanding
change of coordinates.)
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Remember from last week (week 9 p20):
Given a linear transformation T : Rn → R

n, the “right” basis to work in is
B = {b1, . . . ,bn} where T (bi) = λibi for some scalars λi. Then the matrix for T
relative to B is a diagonal matrix:

[T ]
B←B

=





| | |
[T (b1)]B . . . [T (bn)]B

| | |



 =











λ1 0 . . . 0
0 λ2

...
. . .

0 λn











.

Computers are much faster and more accurate when they work with diagonal
matrices, because many entries are 0.
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Also, it’s much easier to understand the linear transformation T from a diagonal

matrix, e.g. if T (b1) = b1 and T (b2) = 2b2, so [T ]
B←B

=

[

1 0
0 2

]

, then T is an

expansion by a factor of 2 in the b2 direction.

So it is important to study the equation T (x) = λx.

(It’s also very useful in ODEs - see MATH3405.)

T (b1) = b1b1

b2

T

T (b2) = 2b2
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Definition: Let A be a square matrix.
An eigenvector of A is a nonzero vector x such that Ax = λx for some scalar λ.
Then we call x an eigenvector corresponding to λ (or a λ-eigenvector).
An eigenvalue of A is a scalar λ such that Ax = λx for some nonzero vector x.

If x is an eigenvector of A, then x and its image Ax are in the same (or opposite,
if λ < 0) direction. Multiplication by A stretches x by a factor of λ.
If x is not an eigenvector, then x and Ax are not geometrically related in any
obvious way.

Warning: eigenvalues and eigenvectors exist for square matrices only. If A is not a
square matrix, then x and Ax are in different vector spaces (they are column
vectors with a different number of rows), so it doesn’t make sense to ask whether
Ax is a multiple of x.

§5.1-5.2: Eigenvectors and Eigenvalues
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Important computations:
i given an eigenvalue, how to find the corresponding eigenvectors (p5-9, §5.1);
ii how to find the eigenvalues (p10-13, §5.2);
iii how to determine if there is a basis B = {b1, . . . ,bn} of Rn where each bi is

an eigenvector (p15-31, §5.3).

Ax = λx

eigenvector: cannot be 0.
A0 = λ0 is always true, so it
holds no information about A.

eigenvalue: can be 0.
Ax = 0x for a nonzero vector x
does hold information about A - it
tells you that A is not invertible. In
fact, A is invertible if and only if 0 is
not an eigenvalue (add to IMT!).
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Warm up:

Example: Let A =

[

8 4
−3 0

]

. Determine whether

[

1
1

]

and

[

−2
1

]

are eigenvectors of A.

Answer:
[

8 4
−3 0

] [

1
1

]

=

[

12
−3

]

is not a multiple of

[

1
1

]

(because its entries are not equal), so
[

1
1

]

is not an eigenvector of A.

[

8 4
−3 0

] [

−2
1

]

=

[

−12
6

]

= 6

[

−2
1

]

, so

[

−2
1

]

is an eigenvector of A corresponding to

the eigenvalue 6.
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i: Given the eigenvalues, find the corresponding eigenvectors:

i.e. we know λ, and we want to solve Ax = λx.
This equation is equivalent to Ax− λx = 0,
which is equivalent to (A− λI)x = 0.

So the eigenvectors of A corresponding to the eigenvalue λ are the nonzero
solutions to (A− λI)x = 0, which we can find by row-reducing A− λI.



The eigenvectors of A corresponding to the eigenvalue λ are the nonzero solutions
to (A− λI)x = 0.

EXAMPLE: Let A =

 8 4

−3 0

. Find the eigenvectors of A corresponding to

the eigenvalue 2.

Solution:

To solve (A − 2I2)(x) = 0, we need to find A − 2I2 first:

A− 2I2 =

 8 4

−3 0

−


 =

8− 4

−3

 =

Now we solve (A − 2I2)(x) = 0: 6 4 0

−3 −2 0

 −→

so the eigenvectors are


−2/3

1

 s
∣∣∣∣∣∣ s

.

A nicer-looking answer:


−2

3

 s
∣∣∣∣∣∣ s

.

Check our answer:

|
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Because it is sometimes convenient to talk about the eigenvectors and 0 together:

Definition: The eigenspace of A corresponding to the eigenvalue λ (or the
λ-eigenspace of A, sometimes written Eλ(A)) is the solution set to (A− λI)x = 0.

Because λ-eigenspace of A is the null space of A− λI, eigenspaces are subspaces.
In the previous example, the eigenspace is a line, but there can also be
two-dimensional eigenspaces:

Example: Let B =





−3 0 0
−1 −2 1
−1 1 −2



. Find a basis for the eigenspace corresponding to

Answer:

B − (−3)I3 =





−3 + 3 0 0
−1 −2 + 3 1
−1 1 −2 + 3



 =





0 0 0
−1 1 1
−1 1 1





row-reduction−−−−−−−→





1 −1 −1
0 0 0
0 0 0



.

So solutions are x2





1
1
0



+ x3





1
0
1



, for all values of x2, x3. So a basis is











1
1
0



 ,





1
0
1











.

the eigenvalue -3.
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Be careful how you write your answer, depending on what the question asks for:

The eigenvectors:







s





1
1
0



+ t





1
0
1





∣

∣

∣

∣

∣

∣

s, t not both zero







.

The eigenspace:







s





1
1
0



+ t





1
0
1





∣

∣

∣

∣

∣

∣

s, t ∈ R







.

A basis for the eigenspace:











1
1
0



 ,





1
0
1











Tip: if you found that (B − λI)x = 0 has no nonzero solutions, then you’ve made
an arithmetic error. Please do not write that the eigenvector is 0!

DON’T write s, t 6= 0, because
that’s confusing: do you mean
s 6= 0 AND t 6= 0?
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ii: Given a matrix, find its eigenvalues:

λ is an eigenvalue of A if (A− λI)x = 0 has non-trivial solutions.
By the Invertible Matrix Theorem, this happens precisely when A−λI is not invertible.
So we must have det(A− λI) = 0.

det(A− λI) is the characteristic polynomial of A (sometimes written χA). If A is
n× n, then this is a polynomial of degree n. So A has at most n different eigenvalues.
det(A− λI) = 0 is the characteristic equation of A.
We find the eigenvalues by solving the characteristic equation.



We find the eigenvalues by solving the characteristic equation det(A− λI) = 0.

EXAMPLE: Find the eigenvalues of A =

 8 4

−3 0

.

Solution:

det(A− λI) =

So the eigenvalues are the solutions to

Factorise:
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We find the eigenvalues by solving the characteristic equation det(A− λI) = 0.

Example: Find the eigenvalues of B =





−3 0 0
−1 −2 1
−1 1 −2



.

Answer:

det(B − λI) =

∣

∣

∣

∣

∣

∣

−3− λ 0 0
−1 −2− λ 1
−1 1 −2− λ

∣

∣

∣

∣

∣

∣

= (−3− λ)

∣

∣

∣

∣

−2− λ 1
1 −2− λ

∣

∣

∣

∣

= (−3− λ)[(−2− λ)(−2− λ)− 1]

= (−3− λ)[λ2 + 4λ+ 3]

= (−3− λ)(λ+ 3)(λ+ 1).

So the eigenvalues are the solutions to (−3− λ)(λ+ 3)(λ+ 1) = 0,

(expand along top row)

Tip: if you already have a
factor, don’t expand it

which are −3, −3, −1.
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Tips:
• Because of the variable λ, it is easier to find det(A− λI) by expanding across

rows or down columns than by using row operations.
• If you already have a factor, do not expand it (e.g. previous page)
• Do not “cancel” λ in the characteristic equation: remember that λ = 0 can be

an eigenvalue (see below).
• The eigenvalues of A are usually not related to the eigenvalues of rref(A).

Example: Find the eigenvalues of C =





3 6 −2
0 0 2
0 0 6



.

Answer: C − λI =





3− λ 6 −2
0 −λ 2
0 0 6− λ



 is upper triangular, so its determinant is

the product of its diagonal entries: det(C − λI) = (3− λ)(−λ)(6− λ), whose
solutions are 3, 0, 6.
By a similar argument (for upper or lower triangular matrices):
Fact: The eigenvalues of a triangular matrix are the diagonal entries.
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Summary: To find the eigenvalues and eigenvectors of a square matrix A:
Step 1 Solve the characteristic equation det(A− λI) = 0 to find the eigenvalues;
Step 2 For each eigenvalue λ, solve (A− λI)x = 0 to find the eigenvectors.

Thinking about eigenvectors conceptually:

Suppose v is an eigenvector of A corresponding to the eigenvalue λ.
Then

A2(v) = A(Av) = A(λv) = λAv = λ(λv) = λ2v.

So any eigenvector of A is also an eigenvector of A2, corresponding to the square
of the previous eigenvalue.

We can also define eigenvalues and eigenvectors for a linear transformation
T : V → V on an abstract vector space V : a nonzero vector v in V is an
eigenvector of T with corresponding eigenvalue λ if T (v) = λv.

Example: Consider T : P3 → P3 given by T (p) = x d
dx
p. Then p(x) = x2 is an

eigenvector of T corresponding to the eigenvalue 2, because
T (x2) = x d

dx
x2 = x2x = 2x2.
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Remember that our motivation for finding eigenvectors is to find a basis relative to
which a linear transformation is represented by a diagonal matrix.

Definition: (week 9 p17) Two square matrices A and B are similar if there is an
invertible matrix P such that A = PBP−1.

From the change-of-coordinates formula (week 9 p14)

[T ]
E←E

= P
E←B

[T ]
B←B

P
B←E

= P
E←B

[T ]B P
E←B

−1,

similar matrices represent the same linear transformation relative to different bases.

§5.3: Diagonalisation

Definition: A square matrix A is diagonalisable if it is similar to a diagonal
matrix, i.e. if there is an invertible matrix P and a diagonal matrix D such that
A = PDP−1.
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Theorem 5: Diagonalisation Theorem: An n× n matrix A is diagonalisable (i.e.
A = PDP−1) if and only if A has n linearly independent eigenvectors.

Proof: we prove a stronger theorem: An n× n matrix A satisfies AP = PD for a
n× k matrix P and a diagonal k × k matrix D if and only if the ith column of P is
an eigenvector of A with eigenvalue dii, or is the zero vector. This comes from
equating column by column the right hand sides of the following equations:

AP = A





| | |
p1 . . . pk

| | |



 =





| | |
Ap1 . . . Apk

| | |





PD =





| | |
p1 . . . pk

| | |















d11 0 . . . 0
0 d22
...

. . .

0 dkk











=





| | |
d11p1 . . . dkkpk

| | |





To deduce The Diagonalisation Theorem, note that A = PDP−1 if and only if
AP = PD and P is invertible, i.e. (using Invertible Matrix Theorem) if and only if
AP = PD and the n columns of P are linearly independent.
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iii.i: Diagonalise a matrix i.e. given A, find P and D with A = PDP−1:

Example: Diagonalise A =

[

8 4
−3 0

]

.

Answer:
Step 1 Solve the characteristic equation det(A− λI) = 0 to find the eigenvalues.

From p11, det(A− λI) = λ2 − 8λ+ 12, eigenvalues are 2 and 6.
Step 2 For each eigenvalue λ, solve (A−λI)x = 0 to find a basis for the λ-eigenspace.

From p7,

{[

−2
3

]}

is a basis for the 2-eigenspace,

You can check that

{[

−2
1

]}

is a basis for the 6-eigenspace.

Notice that these two eigenvectors are linearly independent (this is automatic, p22).
If Step 2 gives fewer than n vectors, A is not diagonalisable (p26). Otherwise, continue:

Step 3 Put the eigenvectors from Step 2 as the columns of P . P =

[

−2 −2
3 1

]

.

Step 4 Put the corresponding eigenvalues as the diagonal entries of D. D =

[

2 0
0 6

]

.
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Checking our answer: PDP−1 =

[

−2 −2
3 1

] [

2 0
0 6

]

1

4

[

1 2
−3 −2

]

=

[

8 4
−3 0

]

= A.

The matrices P and D are not unique:
• In Step 2, we can choose a different basis for the eigenspaces:

e.g. using

[

2
−3

]

instead of

[

−2
3

]

as a basis for the 2-eigenspace, we can take

P =

[

2 −2
−3 1

]

, and then PDP−1 =

[

2 −2
−3 1

] [

2 0
0 6

]

1

4

[

1 2
3 2

]

=

[

8 4
−3 0

]

= A.

• In Step 3, we can choose a different order for the columns of P , as long as we
put the entries of D in the corresponding order:

e.g. P =

[

−2 −2
1 3

]

, D =

[

6 0
0 2

]

then

PDP−1 =

[

−2 −2
1 3

] [

6 0
0 2

]

1

4

[

3 2
−1 −2

]

=

[

8 4
−3 0

]

= A.
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Example: Diagonalise B =





−3 0 0
−1 −2 1
−1 1 −2



.

Answer:
Step 1 Solve the characteristic equation det(B − λI) = 0 to find the eigenvalues.

From p12, det(B − λI) = (−3− λ)(λ+ 3)(λ+ 1), so the eigenvalues are -3 and -1.
Step 2 For each eigenvalue λ, solve (B−λI)x = 0 to find a basis for the λ-eigenspace.

From p8,











1
1
0



 ,





1
0
1











is a basis for the -3-eigenspace; you can check that











0
1
1











is a basis for the -1-eigenspace. You can check that these three eigenvectors are
linearly independent (this is automatic, see p22).

If Step 2 gives fewer than n vectors, B is not diagonalisable (p26). Otherwise, continue:
Step 3 Put the eigenvectors from Step 2 as the columns of P .
Step 4 Put the corresponding eigenvalues as the diagonal entries of D.

P =





1 1 0
1 0 1
0 1 1



, D =





−3 0 0
0 −3 0
0 0 −1





HKBU Math 2207 Linear Algebra Semester 2 2020, Week 10, Page 20 of 34

Remember that B = PDP−1 if and only if BP = PD and P is invertible. This
allows us to check our answer without inverting P :

BP =





−3 0 0
−1 −2 1
−1 1 −2









1 1 0
1 0 1
0 1 1



 =





−3 −3 0
−3 0 −1
0 −3 −1



,

PD =





1 1 0
1 0 1
0 1 1









−3 0 0
0 −3 0
0 0 −1



 =





−3 −3 0
−3 0 −1
0 −3 −1



 = BP , and

detP =

∣

∣

∣

∣

∣

∣

1 1 0
1 0 1
0 1 1

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

0 1
1 1

∣

∣

∣

∣

− 1

∣

∣

∣

∣

1 0
1 1

∣

∣

∣

∣

= −2 6= 0.
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We can use the matrices P and D to quickly calculate powers of B (see also week 9 p19):

B3 = (PDP−1)3

= (PDP−1)(PDP−1)(PDP−1)

= PD3P−1

=





1 1 0
1 0 1
0 1 1









−3 0 0
0 −3 0
0 0 −1





3 



1 1 0
1 0 1
0 1 1





−1

=





1 1 0
1 0 1
0 1 1









−27 0 0
0 −27 0
0 0 −1









1 1 0
1 0 1
0 1 1





−1

=





−27 0 0
−13 −14 13
−13 13 −14



 .

(This sometimes works for“ fractional” and negative powers too, see Homework 5 Q3.)
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At the end of Step 2, after finding a basis for each eigenspace, it is unnecessary to
explicitly check that the eigenvectors in the different bases, together, are linearly
independent:
Theorem 7c: Linear Independence of Eigenvectors: If B1, . . . ,Bp are linearly
independent sets of eigenvectors of a matrix A, corresponding to distinct eigenvalues
λ1, . . . , λp, then the total collection of vectors in the sets B1, . . . ,Bp is linearly
independent. (Proof idea: see practice problem 3 in §5.1 of textbook.)

Example: In the previous example, B1 =











1
1
0



 ,





1
0
1











is a linearly independent set

in the -3-eigenspace, B2 =











0
1
1











is a linearly independent set in the -1-eigenspace,

so the theorem says that











1
1
0



 ,





1
0
1



 ,





0
1
1











is linearly independent.



An important special case of Theorem 7c is when each Bi contains a single
vector:

THEOREM 2: Linear Independence of Eigenvectors: If v1, . . . ,vp are
eigenvectors of a matrix A corresponding to distinct eigenvalues λ1, . . . , λp, then
the set {v1, . . . ,vp} is linearly independent.

To give you an idea of why this is true, and as an example of how to write proofs
involving eigenvectors, we prove this in the simple case p = 2:

We are given that v1,v2 are eigenvectors of A corresponding to distinct eigen-
values λ1, λ2, i.e.

Av1 = ; Av2 =

v1 6= ; v2 6= ; λ1 6= .

We want to show that {v1,v2} is linearly independent, i.e. c1 = c2 = 0 is the
only solution to

(∗)
Multiply both sides by A:

c1λ1v1+

Multiply equation (∗) by λ1:

c1λ1v1+

Subtract:

Because and , we must have c2 = 0.

Substituting into (∗) shows , and because , we
must have c1 = 0.

One proof for p > 2 is to repeat this (multiply by A, multiply by λi, subtract) p−1
times. P288 in the textbook phrases this differently, as a proof by contradiction.
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iii.ii: Determine if a matrix is diagonalisable

From the Diagonalisation Theorem, we know that A is diagonalisable if and only if
A has n linearly independent eigenvectors. Can we determine if A has enough
eigenvectors without finding all those eigenvectors?

To do so, we need an extra idea:
Definition: The (algebraic) multiplicity of an eigenvalue λk is its multiplicity as a
root of the characteristic equation, i.e. it is the number of times the linear factor
(λ− λk) occurs in det(A− λI).

Example: Consider B =





−3 0 0
−1 −2 1
−1 1 −2



. From p12, the characteristic polynomial

of B is det(B − λI) = (−3− λ)(λ+ 3)(λ+ 1) = −(λ+ 3)(λ+ 3)(λ+ 1). So −3
has multiplicity 2, and −1 has multiplicity 1.
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Theorem 7b: Diagonalisability Criteria: An n× n matrix A is diagonalisable if
and only if both the following conditions are true:
i the characteristic polynomial det(A− λI) factors completely into linear factors
(i.e. it has n solutions counting with multiplicity);

ii for each eigenvalue λk, the dimension of the λk-eigenspace is equal to the
multiplicity of λk.

Example: (failure of i) Consider

[√
3/2 −1/2

1/2
√
3/2

]

, the standard matrix for rotation

through π
6
. Its characteristic polynomial is

∣

∣

∣

∣

√
3/2− λ −1/2

1/2
√
3/2− λ

∣

∣

∣

∣

= (
√
3

2
− λ)2 + 1

4
.

This polynomial cannot be written in the form (λ− a)(λ− b) because it has no
solutions, as its value is always ≥ 1

4
. So this rotation matrix is not diagonalisable.

(This makes sense because, after a rotation through π
6
, no vector is in the same or

opposite direction.)

The failure of i can be “fixed” by allowing eigenvalues to be complex numbers, so
we concentrate on condition ii.
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Theorem 7b: Diagonalisability Criteria: An n× n matrix A is diagonalisable if
and only if both the following conditions are true:
i the characteristic polynomial det(A−λI) factors completely into linear factors;
ii for each eigenvalue λk, the dimension of the λk-eigenspace is equal to the
multiplicity of λk.

Example: (failure of ii) Consider

[

0 1
0 0

]

. It is upper triangular, so its eigenvalues

are its diagonal entries (with the same multiplicities), i.e. 0 with multiplicity 2. The

eigenspace of eigenvalue 0 is the set of solutions to

([

0 1
0 0

]

− 0I2

)

x = 0, which is

Span

{[

1
0

]}

. So the eigenspace has dimension 1 < 2, and therefore

[

0 1
0 0

]

is not

diagonalisable.

Fact: (theorem 7a in textbook): the dimension of the λk-eigenspace is at most the
multiplicity of λk. (Proof on p30.) So failure of ii in the Diagonalisability Criteria
happens only when the eigenspaces are “too small”.
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Example: Determine if B =





−3 0 0
−1 −2 1
−1 1 −2



 is diagonalisable.

Answer:
Step 1 Solve det(B − λI) = 0 to find the eigenvalues and multiplicities.

From p12, det(B − λI) = (−3− λ)(λ+ 3)(λ+ 1), so the eigenvalues are -3 (with
multiplicity 2) and -1 (with multiplicity 1).

Step 2 For each eigenvalue λ of multiplicity more than 1, find the dimension of the
λ-eigenspace (e.g. by row-reducing (B − λI) to echelon form):
The dimensions of all eigenspaces are equal to their multiplicities → diagonalisable
The dimension of one eigenspace is less than its multiplicity → not diagonalisable
λ = −1 has multiplicity 1, so we don’t need to study it (see p29 for the reason).
λ = −3 has multiplicity 2, so we need to examine it more closely:

B − (−3)I3 =





−3 + 3 0 0
−1 −2 + 3 1
−1 1 −2 + 3



 =





0 0 0
−1 1 1
−1 1 1





row-reduction−−−−−−−→





1 −1 −1
0 0 0
0 0 0



.

This has two free variables (x2, x3), so the dimension of the -3-eigenspace is two,
which is equal to its multiplicity. So B is diagonalisable.
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Example: Let K =









6 −4 4 9
−9 9 8 −17
0 0 5 0

−5 4 −4 −8









.

Answer:
Step 1 Solve det(K − λI) = 0 to find the eigenvalues and multiplicities.

The eigenvalues are 1 (with multiplicity 2) and 5 (with multiplicity 2).
Step 2 For each eigenvalue λ of multiplicity more than 1, find the dimension of the

λ-eigenspace (e.g. by row-reducing (K − λI) to echelon form):
The dimensions of all eigenspaces are equal to their multiplicities → diagonalisable
The dimension of one eigenspace is less than its multiplicity → not diagonalisable

λ = 1: K − 1I4 =









5 −4 4 9
−9 8 8 −17
0 0 4 0

−5 4 −4 −9









→









5 −4 4 9
0 4 ∗ ∗
0 0 4 0
0 0 0 0









.

x4 is the only one free variable, so the dimension of the 1-eigenspace is one, which
is less than its multiplicity. So K is not diagonalisable. (We don’t need to also
check λ = 5.)

Given that det(K − λI) = (λ− 1)2(λ− 5)2,
determine if K is diagonalisable.

5R2 − 9R1

R4 −R1
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In Step 2, why don’t we need to look at eigenvalues with multiplicity 1?
Answer: because the dimension of an eigenspace is always at least 1. So if an
eigenvalue has multiplicity 1, then the dimension of its eigenspace must be exactly 1.

In particular: suppose an n× n matrix has n different eigenvalues. The multiplicity
of each eigenvalue is at least 1, and if any eigenvalue has multiplicity > 1, then χ
will have more than n factors. So each eigenvalue must have multiplicity exactly 1.
Theorem 6: Distinct eigenvalues implies diagonalisable: If an n× n matrix has
n distinct eigenvalues, then it is diagonalisable.

Example: Is C =





3 6 −2
0 0 2
0 0 6



 diagonalisable?

Answer: C is upper triangular, so its eigenvalues are its diagonal entries (with the
same multiplicities), i.e 3, 0 and 6. Since C is 3× 3 and it has 3 different
eigenvalues, C is diagonalisable.

Warning: an n× n matrix with fewer than n eigenvalues can still be diagonalisable!
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To prove the Diagonalisability Criteria, we first need to prove
Fact: (theorem 7a in textbook): the dimension of the λk-eigenspace is at most
the multiplicity of λk.

Proof: (sketch, hard) Let λk = r, and let d be the dimension of the r-eigenspace.
We want to show that (λ− r)d divides det(A− λI).

For simplicity, I show the case d = 3. Take a basis of the r-eigenspace: this gives
3 linearly independent eigenvectors v1,v2,v3 corresponding to the eigenvalue r.

By the Linearly Independent Set theorem, we can extend {v1,v2,v3} to a basis of
R

n called B = {v1,v2,v3,w4, . . . ,wn}.
Let T : Rn → R

n be the linear transformation whose standard matrix is A.
Because T (vi) = rvi, we have

[T ]
B←B

=



















r 0 0 ∗ . . . ∗
0 r 0 ∗ . . . ∗
0 0 r ∗ . . . ∗
0 0 0 ∗ . . . ∗
...

...
...

...
...

...
0 0 0 ∗ . . . ∗



















.
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det(PBP−1 − λI) = det(PBP−1 − λPP−1)

= det(P (B − λI)P−1)

= detP det(B − λI) det(P−1)

= detP det(B − λI)
1

detP
= det(B − λI).

So det( [T ]
B←B

− λIn) is: (expanding down the first column each time)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r − λ 0 0 ∗ . . . ∗
0 r − λ 0 ∗ . . . ∗
0 0 r − λ ∗ . . . ∗
0 0 0 ∗ . . . ∗
...

...
...

...
...

...
0 0 0 ∗ . . . ∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= r−λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

r − λ 0 ∗ . . . ∗
0 r − λ ∗ . . . ∗
0 0 ∗ . . . ∗
...

...
...

...
...

0 0 ∗ . . . ∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (r−λ)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

r − λ ∗ . . . ∗
0 ∗ . . . ∗
...

...
...

...
0 ∗ . . . ∗

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (r − λ)3× some polynomial

So (r− λ)3 divides det( [T ]
B←B

− λIn), which is the same as det(A− λIn) because similar

matrices have the same characteristic polynomial (and therefore the same eigenvalues):
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Proof: (sketch)
“if” part: This is the diagonalisation algorithm:
if ii holds, then a basis for each Eλk

gives mk linearly independent eigenvectors
corresponding to the eigenvalue λk.
Putting these bases together gives m1 +m2 + · · · = n eigenvectors, which are
linearly independent by the Linear Independence of Eigenvectors Theorem (p22).

Write mk for the multiplicity of λk. We proved on the previous page:
Fact: dimEλk

≤ mk.
We now use it to show Theorem 7b: Diagonalisability Criteria: An n× n

matrix A is diagonalisable (i.e. A has n linearly independent eigenvectors) if and
only if both the following conditions are true:
i the characteristic polynomial det(A− λI) factors completely into linear
factors, i.e. m1 +m2 + · · · = n;

ii for each eigenvalue λk, we have dimEλk
= mk.
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Proof: (sketch)
“only if” part: Given a set of n linearly independent eigenvectors, suppose bk of
them correspond to λk (so b1 + b2 + · · · = n).
These bk vectors are part of a larger linearly independent set, so they must
themselves be independent.
So we have bk linearly independent vectors in Eλk

, thus bk ≤ dimEλk
.

Also dimEλk
≤ mk from the Fact.

So n = b1 + b2 + · · · ≤ dimEλ1
+ dimEλ2

+ · · · ≤ m1 +m2 + · · · ≤ n,
so all our ≤ must be =.

Write mk for the multiplicity of λk. We proved on the previous page:
Fact: dimEλk

≤ mk.
We now use it to show Theorem 7b: Diagonalisability Criteria: An n× n

matrix A is diagonalisable (i.e. A has n linearly independent eigenvectors) if and
only if both the following conditions are true:
i the characteristic polynomial det(A− λI) factors completely into linear
factors, i.e. m1 +m2 + · · · = n;

ii for each eigenvalue λk, we have dimEλk
= mk.

(1)

(2)
(3)

(1) (2) (3)
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Non-examinable: what to do when A is not diagonalisable:

We can still write A as PJP−1, where J is “easy to understand and to compute
with”. Such a J is called a Jordan form.

For example, all non-diagonalisable 2× 2 matrices are similar to

[

λ 1
0 λ

]

, where λ

is the only eigenvalue (allowing complex eigenvalues).

(A Jordan form may contain more than

one Jordan block, e.g.









λ 1 0 0
0 λ 0 0
0 0 λ 1
0 0 0 λ









contains two 2× 2 Jordan blocks.)
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Non-examinable: rectangular matrices (see §7.4 of textbook):

Any m× n matrix A can be decomposed as A = QDP−1 where:
P is an invertible n× n matrix with columns pi;
Q is an invertible m×m matrix with columns qi;
D is a “diagonal” m× n matrix with diagonal entries dii:

e.g.

[

d11 0 0 0
0 d22 0 0

]

,





d11 0
0 d22
0 0



.

Instead of Avi = λivi, this decomposition satisfies Api = diiqi for all i ≤ m,n.

So the maximal number of nonzero entries
is the smaller of m and n.

An important example is the singular value decomposition A = UΣV T . Each
diagonal entry of Σ is a singular value of A, which is the squareroot of an
eigenvalue of ATA (a diagonalisable n× n matrix with non-negative eigenvalues).
The singular values contain a lot of information about A, e.g. the largest singular
value is the “maximal length scaling factor” of A. (Even for a square matrix, this
is in general not true with the eigenvalues of A, so depending on the problem the
SVD may be more useful than the diagonalisation of A.)
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Let A =

[
1 2
2 4

]

. The linear system Ax =

[
3
2

]

does not have a solution, because

We wish to find a “closest
approximate solution”, i.e. a vector x̂
such that Ax̂ is the unique point in

ColA that is “closest” to

[
3
2

]

. This is

called a least-squares solution (p17).

To do this, we have to first define
what we mean by “closest”, i.e.
define the idea of distance.

[
3
2

]

is not in ColA = Span

{[
1
2

]}

.

[
3
2

]

ColA, i.e. all the b

for which Ax = b

has a solution

Ax̂
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In R
2, the distance between u and v is

the length of their difference u− v.

So, to define distances in R
n, it’s enough

to define the length of vectors.

In R
2, the length of

[
v1
v2

]

is
√

v2
1
+ v2

2
.

So we define the length of






v1
...
vn




 is

√

v2
1
+ · · ·+ v2n.

u

v u−v

v

v1
︸ ︷︷ ︸

}

v2



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 11, Page 3 of 27

§6.1, p368: Length, Orthogonality, Best Approximation
It is more useful to define a more general idea:

Definition: The dot product of two vectors u =






u1

...
un




 and v =






v1
...
vn




 in R

n is

the scalar
u · v = uTv = u1v1 + · · ·+ unvn.

Warning: do not write uv, which is an undefined matrix-vector product, or
u× v, which has a different meaning. Do not write u2, which is ambiguous.

Definition: The length or norm of v is

‖v‖ =
√
v · v =

√

v2
1
+ · · ·+ v2n.

Definition: The distance between u and v is ‖u− v‖.
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u · v = uTv = u1v1 + · · ·+ unvn.

‖v‖ =
√
v · v =

√

v2
1
+ · · ·+ v2n.

Distance between u and v is

‖u− v‖.

Example: u =





3
0

−1



 ,v =





8
5

−6



.

u · v = 3 · 8 + 0 · 5 +−1 · −6 = 24 + 0 + 6 = 30.

The distance between u and v is∥
∥
∥
∥
∥
∥





3
0

−1



−





8
5

−6





∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥





−5
−5
5





∥
∥
∥
∥
∥
∥

=
√

(−5)2 + (−5)2 + 52 =
√
75 = 5

√
3.
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Properties of the dot product:

So b and c together says that, for fixed w, the function x 7→ x ·w is linear - this
is true because x ·w = w · x = wTx and matrix multiplication by wT is linear.

symmetry

linearity in each input
separately

positivity; and the only vector
with length 0 is 0

}
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From property c:

so (squareroot both sides)

For many applications, we are interested in vectors of length 1.
Definition: A unit vector is a vector whose length is 1.

Given v, to create a unit vector in the same direction as v, we divide v by its
length ‖v‖ (i.e. take c = 1

‖v‖ in the equation above). This process is called

normalising.

Example: Find a unit vector in the same direction as v =





8
5

−6



.

Answer: v · v = 82 + 52 + (−6)2 = 125.

So a unit vector in the same direction as v is
v

‖v‖ =
1√
125





8
5

−6



.

‖cv‖2 = (cv) · (cv) = c2v.v = c2 ‖v‖2 ,

‖cv‖ = |c| ‖v‖ .
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Visualising the dot product:
In R

2, the cosine law says ‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2 ‖u‖ ‖v‖ cos θ.
We can “expand” the left hand side using dot products:

0
u

v

v · u
︸ ︷︷ ︸

Notice that u and v are perpendicular if and
only if θ = π

2
, i.e. when cos θ = 0. This is

equivalent to u · v = 0.

‖u− v‖2 = (u− v) · (u− v)

= u · u− u · v − v · u+ v · v
= ‖u‖2 − 2u · v + ‖v‖2 .

Comparing with the cosine law, we see u · v = ‖u‖ ‖v‖ cos θ.

In particular, if u is a unit vector, then v · u = ‖v‖ cos θ,
as shown in the bottom picture.

θ
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So, to generalise the idea of angles and perpendicularity to R
n for n > 2, we

make the following definitions:

Definition: The angle between two vectors u and v is arccos
u · v

‖u‖ ‖v‖ .
Definition: Two vectors u and v are orthogonal if u · v = 0.
We also say u is orthogonal to v.

Another way to see that orthogonality generalises perpendicularity:

Theorem 2: Pythagorean Theorem: Two vectors u and v are orthogonal if
and only if ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
Proof:

‖u+ v‖2 = (u+ v) · (u+ v)

= u · u+ u · v + v · u+ v · v
= ‖u‖2 + 2u · v + ‖v‖2 .

So ‖u+ v‖2 = ‖u‖2 + ‖v‖2 if and only if u · v = 0.
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Instead of v being orthogonal to just a single vector u, we can consider
orthogonality to a set of vectors:

Definition: Let W be a subspace of Rn (or more generally a subset).
A vector z is orthogonal to W if it is orthogonal to every vector in W .
The orthogonal complement of W , written W⊥, is the set of all vectors orthogonal
to W . In other words, z is in W⊥ means z ·w = 0 for all w in W .

Example: Let W be the x1x3-plane in R
3, i.e. W =











a
0
b





∣
∣
∣
∣
∣
∣

a, b ∈ R






.





0
1
0



 is orthogonal to W , because





0
1
0



 ·





a
0
b



 = 0 · a+ 1 · 0 + 0 · b = 0.

We show on p13 that W⊥ is Span











0
1
0










.
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Key properties of W⊥, for a subspace W of Rn:

1. If x is in both W and W⊥, then x = 0 (ex. sheet #21
q2b).

2. If W = Span {v1, . . . ,vp}, then y is in W⊥ if and only if
y is orthogonal to each vi (same idea as ex. sheet q2a,
see diagram).

3. W⊥ is a subspace of Rn (checking the axioms directly is
not hard, alternative proof p13).

4. dimW + dimW⊥ = n (follows from alternative proof of
3, see p13).

5. If W⊥ = U , then U⊥ = W .
6. For a vector y in R

n, the closest point in W to y is the
unique point ŷ such that y − ŷ is in W⊥ (see p15-17).

(1 and 3 are true for any set W , even when W is not a
subspace.)
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Dot product and matrix multiplication:
Remember (week 2 p16, §1.4) the row-column method of matrix-vector multiplication:

Example:





4 3
2 6
14 10





[
−2
2

]

=





4(−2) + 3(2)
2(−2) + 6(2)

14(−2) + 10(2)



 =





−2
8

−8



.

This last entry is

[
14
10

]

·
[
−2
2

]

.

In general,





−− r1 −−
−−

... −−
−− rm −−




x =






r1 · x
...

rm · x




 .

Now consider

By (∗), this is equivalent to
By property 2 on the previous page,
this is equivalent to

x ∈ NulA

ri · x = 0

r · x = 0

for all i.

for all r ∈ Span {r1, . . . , rm} = RowA.

(∗)
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So x ∈ NulA if and only if x ∈ (RowA)⊥. We have proved
Theorem 3: Orthogonality of Subspaces associated to Matrices: For a
matrix A, (RowA)⊥ = NulA and (ColA)⊥ = NulAT .
The second assertion comes from applying the first statement to AT instead of
A, remembering that RowAT = ColA.

By definition of orthogonal
complement, this is equivalent to

x ∈ (RowA)⊥



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 11, Page 13 of 27

Theorem 3: Orthogonality of Subspaces associated to Matrices: For a matrix
A, (RowA)⊥ = NulA and (ColA)⊥ = NulAT .

We can use this theorem to prove that W⊥ is a subspace: given a subspace W of Rn,
let A be the matrix whose rows is a basis for W , so RowA = W . Then W⊥ = NulA,
and null spaces are subspaces, so W⊥ is a subspace.
Futhermore, the Rank Nullity Theorem says dimRowA+ dimNulA = n, so
dimW + dimW⊥ = n.

The argument above also gives us a way to compute orthogonal complements:

Example: Let W =











a
0
b





∣
∣
∣
∣
∣
∣

a, b ∈ R






. A basis for W is











1
0
0



 ,





0
0
1










. Let

A =

[
1 0 0
0 0 1

]

. Then W = RowA so W⊥ = NulA, i.e. the solutions to

[
1 0 0
0 0 1

]

x = 0.

So W⊥ =






s





0
1
0





∣
∣
∣
∣
∣
∣

s ∈ R






. Notice dimW + dimW⊥ = 2 + 1 = 3.
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On p11, we related the matrix-vector product to the dot product:





−− r1 −−
−−

... −−
−− rm −−




x =






r1 · x
...

rm · x




 .

Because each column of a matrix-matrix product is a matrix-vector product,

AB = A





| | |
b1 . . . bp

| | |



 =





| | |
Ab1 . . . Abp

| | |



 ,

we can also express matrix-matrix products in terms of the dot product:
the (i, j)-entry of the product AB is (ith row of A) · (jth column of B)






−− r1 −−
−−

... −−
−− rm −−










| | |
b1 . . . bp

| | |



 =






r1 · b1 . . . r1 · bp

...
...

rm · b1 . . . rm · bp




 .
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Closest point to a subspace:
Theorem 9: Best Approximation Thoerem: Let W be a subspace of Rn, and y

a vector in R
n. Then there is a unique point ŷ in W such that y − ŷ is in W⊥,

and this ŷ is the closest point in W to y in the sense that ‖y − ŷ‖ < ‖y − v‖ for
all v in W with v 6= ŷ.

Example: Let W = Span











1
0
0



 ,





0
1
0










, so W⊥ = Span











0
0
1










. Let y =





5
2
4



.

Take ŷ =





5
2
0



, then y − ŷ =





0
0
4



 is in W⊥,

so ŷ =





5
2
0



 is unique point in W that is

closest to





5
2
4



.

y =





5

2

4





ŷ =





5

2

0





W

v

y − ŷ
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Theorem 9: Best Approximation Thoerem: Let W be a subspace of Rn, and y

a vector in R
n. Then there is a unique point ŷ in W such that y − ŷ is in W⊥,

and this ŷ is the closest point in W to y in the sense that ‖y − ŷ‖ < ‖y − v‖ for
all v in W with v 6= ŷ.

Partial Proof: We show here that, if y − ŷ is in W⊥, then ŷ is the unique closest
point (i.e. it satisfies the inequality). We will not show here that there is always a ŷ

such that y − ŷ is in W⊥. (See §6.3 on orthogonal projections, in Week 12 notes.)

The left hand side is ‖y − v‖2.
The right hand side: if v 6= ŷ, then the second
term is the squared-length of a nonzero vector,
so it is positive. So ‖y − v‖2 > ‖y − ŷ‖2 and so
‖y − v‖ > ‖y − ŷ‖.

We are assuming that y − ŷ is in W⊥. (vertical blue edge)
ŷ − v is a difference of vectors in W , so it is in W . (horizontal blue edge)
So y − ŷ and ŷ − v are orthogonal. Apply the Pythagorean Theorem (blue
triangle): ‖(y − ŷ) + (ŷ − v)‖2 = ‖y − ŷ‖2 + ‖ŷ − v‖2
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§6.5-6.6: Least Squares, Application to Regression
Remember our motivation: we have an inconsistent equation Ax = b, and we
want to find a “closest approximate solution” x̂ such that Ax̂ is the point in ColA
that is closest to b.

Definition: If A is an m× n matrix and b is in R
m, then a least-squares solution

of Ax = b is a vector x̂ in R
n such that ‖b−Ax̂‖ ≤ ‖b−Ax‖ for all x in R

n.

Equivalently: we want to find a vector b̂ in ColA that is closest to b, and then
solve Ax̂ = b̂.

1

2

Because of the Best Approximation
Theorem (p15-16): b− b̂ is in (ColA)⊥.
Because of Orthogonality of Subspaces
associated to Matrices (p11-13):
(ColA)⊥ = NulAT .
So we need b̂ so that b− b̂ is in NulAT .

= b̂
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The least-squares solutions to Ax = b are the solutions to Ax̂ = b̂ where b̂ is the
unique vector such that b− b̂ is in NulAT .
Equivalently,

AT (b− b̂) = 0

ATb−AT b̂ = 0

ATb = AT b̂

ATb = ATAx̂

So we have proved:
Theorem 13: Least-Squares Theorem: The set of least-squares solutions of
Ax = b is the set of solutions of the normal equations ATAx̂ = ATb.

Because of the existence part of the Best Approximation Theorem (that we will
prove later), ATAx̂ = ATb is always consistent.
Warning: The terminology is confusing: a least-squares solution x̂, satisfying
ATAx̂ = ATb, is in general not a solution to Ax = b. That is, usually Ax̂ 6= b.
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Theorem 13: Least-Squares Theorem: The set of least-squares solutions of
Ax = b is the set of solutions of the normal equations ATAx̂ = ATb.

Example: Let A =





4 0
0 2
1 1



 and b =





2
0
11



. Find a least-

squares solution of the inconsistent equation Ax = b.

Answer: We solve the normal equations ATAx̂ = ATb:

[
4 0 1
0 2 1

]




4 0
0 2
1 1



 x̂ =

[
4 0 1
0 2 1

]




2
0

11





[
17 1
1 5

]

x̂ =

[
19
11

]

By row-reducing

[
17 1 19
1 5 11

]

, we find x̂ =

[
1
2

]

. Note that Ax̂ =





4
4
3



 6= b.
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Example: (from p1) Let A =

[
1 2
2 4

]

and b =

[
3
2

]

. Find the set of least-squares

solutions of the inconsistent equation Ax = b.

[
3
2

]

b̂ = Ax̂

Answer: We solve ATAx̂ = ATb:
[
1 2
2 4

] [
1 2
2 4

]

x̂ =

[
1 2
2 4

] [
3
2

]

[
5 10
10 20

]

x̂ =

[
7
14

]

Row-reducing

[
5 10 7

10 20 14

]

gives x̂=

[
7/5

0

]

+ s

[
−2
1

]

where s can take any value.

Note that Ax̂ = A

([
7/5

0

]

+ s

[
−2
1

])

=

[
7/5

14/5

]

,

independent of s: Ax̂ is the closest point in
ColA to b, which by the Best Approximation
Theorem is unique.
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Observations from the previous examples:
• ATA is a square matrix and is symmetric. (Exercise: prove it!)
• The normal equations sometimes have a unique solution and sometimes have

infinitely many solutions, but Ax̂ is unique.
When is the least-squares solution unique?

Theorem 14: Uniqueness of Least-Squares Solutions: The equation Ax = b

has a unique least-squares solution if and only if the columns of A are linearly
independent.

Consequences:
• The number of least-squares solutions to Ax = b does not depend on b, only

on A.
• Because ATA is a square matrix, if the least-squares solution is unique, then it

is x̂ = (ATA)−1ATb. This formula is useful theoretically (e.g. for deriving
general expressions for regression coefficients).
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Theorem 14: Uniqueness of Least-Squares Solutions: The equation Ax = b

has a unique least-squares solution if and only if the columns of A are linearly
independent.

Proof 1: The least-squares solutions are the solutions to the normal equations
ATAx̂ = ATb. So
• “unique least-squares solution” is equivalent to Nul(ATA) = {0}.
• “columns of A are linearly independent” is equivalent to NulA = {0}.
So the theorem will follow if we prove the stronger fact Nul(ATA) = NulA; in
other words, ATAx = 0 if and only if Ax = 0.
• If Ax = 0, then ATAx = AT (Ax) = AT0 = 0.

• If ATAx = 0, then ‖Ax‖2 = (Ax) · (Ax) = (Ax)T (Ax) = xTATAx

= xT (ATAx) = xT0 = 0. So the length of Ax is 0, which means it must be
the zero vector.

Proof 2: The least-squares solutions are the solutions to Ax̂ = b̂ where b̂ is
unique (the closest point in ColA to b). The equation Ax̂ = b̂ has a unique
solution precisely when the columns of A are linearly independent.
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Application: least-squares line

Suppose we have a model that relates two quantities x and y linearly, i.e. we
expect y = β0 + β1x, for some unknown numbers β0, β1.
To estimate β0 and β1, we do an experiment, whose results are
(x1, y1), . . . , (xn, yn).
Now we wish to solve (for β0, β1):

β0 + β1x1 = y1

β0 + β1x2 = y2

...
...

β0 + β1xn = yn

i.e.










1 x1

1 x2

...
...

1 xn










[

β0

β1

]

=










y1

y2
...

yn










X β = y

design
matrix

parameter
vector

observation
vector

Ax = b with
different notation
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Because experiments are rarely perfect, our data points (xi, yi) probably don’t all
lie exactly on any line, i.e. this system probably doesn’t have a solution. So we
ask for a least-squares solution.

A least-squares solution minimises ‖y −Xβ‖, which is equivalent to minimising

‖y −Xβ‖2 = (y1 − (β0 + β1x1))
2 + · · ·+ (yn − (β0 + β1xn))

2, the sums of the
squares of the residuals. (The residuals are the vertical distances between each
data point and the line, as in the diagram above).

We wish to solve (for β0, β1):






1 x1

1 x2

...
...

1 xn








[
β0

β1

]

=








y1
y2
...
yn








X β = y

design
matrix

parameter
vector

observation
vector
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Example: Find the equation y = β̂0 + β̂1x for the least-squares line for the
following data points:

xi 2 5 7 8
yi 1 2 3 3

Answer: The model equation Xβ = y is

The normal equations XTXβ̂ = XTy are

[

1 1 1 1

2 5 7 8

]









1 2

1 5

1 7

1 8









β̂ =

[

1 1 1 1

2 5 7 8

]









1

2

3

3









[

4 22

22 142

]

β̂ =

[

9

57

]

.

Row-reducing gives β̂ =

[
2/7

5/14

]

, so the equation

of the least-squares line is y = 2/7 + 5/14x.

β̂0 + β̂12 = 1

β̂0 + β̂15 = 2

β̂0 + β̂17 = 3

β̂0 + β̂18 = 3







1 2
1 5
1 7
1 8






β =







1
2
3
3






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Application: least-squares fitting of other curves

Suppose we model y as a more complicated function of x, i.e.
y = β0f0(x) + β1f1(x) + · · ·+ βkfk(x), where f0, . . . , fk are known functions, and
β0, . . . , βk are unknown parameters that we will estimate from experimental data.
Such a model is still called a “linear model”, because it is linear in the parameters
β0, . . . , βk.

Example: Estimate the parameters β1, β2, β3 in the model y = β1x+ β2x
2 + β3x

3,
given the data xi 2 3 4 6 7

yi 1.6 2.0 2.5 3.1 3.4

Answer: The model equations are β12 + β22
2 + β32

3 = 1.6
β13 + β23

2 + β33
3 = 2.0, and so on.

In matrix form:









2 4 8
3 9 27
4 16 64
6 36 216
7 49 343









β =









1.6
2.0
2.5
3.1
3.4









. Then we solve the normal equations etc...
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Least-squares techniques can also be used to fit a surface to experimental data,
for linear models with more than one input variable (e.g. y = β0 + β1x+ β2xw,
for input variables x and w) - this is called multiple regression.

So in general, to estimate the parameters β0, . . . , βk in a linear model
y = β0f0(x) + β1f1(x) + · · ·+ βkfk(x), we find the least-squares solution to

β0f0(x1) + β1f1(x1) + · · ·+ βkfk(x1) = y1

β0f0(x2) + β1f1(x2) + · · ·+ βkfk(x2) = y2

...
...

...

i.e.









f0(x1) f1(x1) . . . fk(x1)

f0(x2) f1(x2) . . . fk(x2)
...

...
...

f0(xn) f1(xn) . . . fk(xn)















β0

...

βk






=









y1

y2
...

yn









(Least-squares lines correspond to the case f0(x) = 1, f1(x) = x.)

more general
design matrix

parameter
vector with
more rows

same
observation
vector
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y

ŷ

W

v

y − ŷ

Remember from last week:
Theorem 9: Best Approximation Thoerem: Let W be a subspace of Rn, and y

a vector in R
n. Then there is a unique point ŷ in W such that y − ŷ is in W⊥,

and this ŷ is the closest point in W to y in the sense that ‖y − ŷ‖ < ‖y − v‖ for
all v in W with v 6= ŷ.

We proved last week that, if ŷ is in W , and y − ŷ is in W⊥, then ŷ is the unique
closest point in W to y. But we did not prove that a ŷ satisfying these conditions
always exist.

We will show that the function y 7→ ŷ is a linear transformation, called the
orthogonal projection onto W , and calculate it using an orthogonal basis for W .

Our remaining goals:
§6.2 The properties of orthogonal bases (p2-9)
§6.3 Calculating the orthogonal projection (p10-19)
§6.4 Constructing orthogonal bases (p20-22)
§6.2 Matrices with orthogonal columns (p23-26)
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§6.2: Orthogonal Bases
Definition:

Example:











1
2
3



 ,





−1
5

−3



 ,





3
0

−1










is an orthogonal set, because





1
2
3



·





−1
5

−3



= −1+10−9 = 0,





1
2
3



·





3
0

−1



= 3+0−3 = 0,





−1
5

−3



·





3
0

−1



= −3+0+3 = 0.

To obtain an orthonormal set, we normalise each vector in the set:









1/
√
14

2/
√
14

3/
√
14



 ,





−1/
√
35

5/
√
35

−3/
√
35



 ,





3/
√
10
0

−1/
√
10










is an orthonormal set.

• A set of vectors {v1, . . . ,vp} is an orthogonal set if each pair of distinct
vectors from the set is orthogonal, i.e. if vi · vj = 0 whenever i 6= j.

• A set of vectors {u1, . . . ,up} is an orthonormal set if it is an
orthogonal set and each ui is a unit vector.



EXAMPLE: In R6, the set {e1, e3, e5, e6,0} is an orthogonal set, because
ei · ej = 0 for all i 6= j, and ei · 0 = 0.

So an orthogonal set may contain the zero vector. But when it doesn’t:

THEOREM 4 If {v1, . . . ,vp} is an orthogonal set of nonzero vectors, then it
is linearly independent.

PROOF We need to show that is the only solution to

(∗)

Take the dot product of both sides with v1:

c1 + c2 + · · ·+ cp =

If j 6= 1, then vj · v1 = , so

c1 + c2 + · · ·+ cp =

Because , we have v1 ·v1 is nonzero, so it must be that c1 = 0.

By taking the dot product of (∗) with each of the other vis and using this
argument, each ci must be 0.
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Let {v1, . . . ,vp} is an orthogonal set of nonzero vectors, as before, and use the
same idea with

Take the dot product of both sides with v1:

Using that vj · v1 = 0 whenever j 6= 1:

Since v1 is nonzero, v1 · v1 is nonzero, we can divide both sides by v1 · v1:

By taking the dot product of (∗) with each of the other vjs and using this

argument, we obtain cj =
y · vj

vj · vj

.

So finding the weights in a linear combination of orthogonal vectors is much easier
than for arbitrary vectors (see the example on p6).

y = c1v1 + c2v2 + · · ·+ cpvp.

y · v1 = (c1v1 + c2v2 + · · ·+ cpvp) · v1

y · v1 = c1v1 · v1 + c2v2 · v1 + · · ·+ cpvp · v1.

y · v1 = c1v1 · v1 + c20 + · · ·+ cp0

y · v1

v1 · v1
= c1

(∗)
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Definition:

Example: The standard basis {e1, . . . , en} is an orthonormal basis for Rn.
By the previous theorem, if S is a orthogonal set of nonzero vectors, then S is an
orthogonal basis for the subspace Span(S).

• A set of vectors {v1, . . . ,vp} is an orthogonal basis for a subspace W
if it is both an orthogonal set and a basis for W .

• A set of vectors {u1, . . . ,up} is an orthonormal basis for a subspace
W if it is both an orthonormal set and a basis for W .

As proved on the previous page, a big advantage of orthogonal bases is:
Theorem 5: Weights for Orthogonal Bases: If {v1, . . . ,vp} is an orthogonal basis
for W , then, for each y in W , the weights in the linear combination

y = c1v1 + · · ·+ cpvp

are given by
cj =

y · vj

vj · vj

.

In particular, if {u1, . . . ,up} is an orthonormal basis, then the weights are cj = y · uj .



HKBU Math 2207 Linear Algebra Semester 2 2020, Week 12, Page 6 of 28

Example: Express





10
9
0



 as a linear combination of





1
2
3



 ,





−1
5

−3



 ,





3
0

−1



.

Slow Answer: (works for any basis)



1 −1 3 10
2 5 0 9
3 −3 −1 0









1 −1 3 10
0 7 −6 −11
0 0 −10 −30









1 −1 3 10
0 7 −6 −11
0 0 1 3









1 −1 0 1
0 7 0 7
0 0 1 3









1 −1 0 1
0 1 0 1
0 0 1 3









1 0 0 2
0 1 0 1
0 0 1 3





R2 − 2R1

R3 − 3R1

R3/− 10

R2 + 6R3

R2/7

R1 +R2

R1 − 3R3 So





10
9
0



 = 2





1
2
3



+ 1





−1
5

−3



+ 3





3
0

−1



.
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Example: Express





10
9
0



 as a linear combination of





1
2
3



 ,





−1
5

−3



 ,





3
0

−1



.

Fast Answer: (for an orthogonal basis) We showed on p2 that these three vectors form
an orthogonal set. Since the vectors are nonzero, the set is linearly independent, and is

therefore a basis for R3. Now use the formula cj =
y · vj

vj · vj

:

c1 =









10
9
0









·









1
2
3

















1
2
3









·









1
2
3









= 10+18+0
12+22+32 = 2, c2 =









10
9
0









·









−1
5
3

















−1
5
3









·









−1
5
3









= −10+45+0
(−1)2+52+(−3)2 = 1,

c3 =









10
9
0









·









3
0

−1

















3
0

−1









·









3
0

−1









= 30+0+0
32+0+(−1)2 = 3, So





10
9
0



 = 2





1
2
3



+ 1





−1
5

−3



+ 3





3
0

−1



.



y = (y · u1)u1 + · · ·+ (y · up)up.

A geometric interpretation of this decomposition in R2:

From the Weights for Orthogonal Bases Theorem: if {u1, . . . , up} is an

orthonormal basis for a subspace W in Rn, then each y in W is
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arbitrary basis -
parallelogram grid

orthogonal basis -
rectangular grid

orthonormal basis -
square grid

b1

b2

b1 b1

b2
b2

A geometric comparison of bases with different properties:
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§6.3: Orthogonal Projections
Recall that our motivation for defining orthogonal bases is to calculate the unique
closest point in a subspace.
Let W be a subspace, and {v1, . . . ,vp} be an orthogonal basis for W . Let y be
any vector, and ŷ be the vector in W that is closest to y.
Since ŷ is in W , and {v1, . . . ,vp} is a basis for W , we must have
ŷ = c1v1 + · · ·+ cpvp for some weights c1, . . . , cp.
We know from the Best Approximation Theorem that y − ŷ is in W⊥. By the
properties of W⊥, it’s enough to show that (y − ŷ) · vi = 0 for each i. We can
use this condition to solve for ci: (y − ŷ) · v1 = 0

(y − c1v1 − c2v2 − · · · − cpvp) · v1 = 0

y · v1 − c1v1 · v1 − c2v2 · v1 − · · · − cpvp · v1 = 0

y · v1 − c1v1 · v1 − c2 0 − · · · − cp0 = 0

so c1 =
y · v1

v1 · v1
. Similarly, ci =

y · vi

vi · vi

.
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So we have proved (using the Best Approximation Theorem to deduce the uniqueness
of ŷ):
Theorem 8: Orthogonal Decomposition Theorem: Let W be a subspace of Rn.
Then every y in R

n can be written uniquely as y = ŷ + z with ŷ in W and z in W⊥.
In fact, if {v1, . . . ,vp} is any orthogonal basis for W , then

ŷ =
y · v1

v1 · v1
v1 + · · ·+ y · vp

vp · vp

vp and z = y − ŷ.

(Technically, to complete the proof, we need to show that every subspace has an
orthogonal basis - see p20-22 for an explicit construction.)

Definition: The orthogonal projection onto W is the function projW : Rn → R
n such

that projW (y) is the unique ŷ in the above theorem. The image vector projW (y) is
the orthogonal projection of y onto W .

The uniqueness part of the theorem means that the projW (y) does not depend on the
orthogonal basis used to calculate it.
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Example: Let y =





6
7

−2



 ,v1 =





1
2
3



 ,v2 =





−1
5

−3



 and let W = Span {v1,v2}.

Find the point in W closest to y and the distance from y to W .
Answer: v1 · v2 = 0, so {v1,v2} is an orthogonal basis for W . So the point in W
closest to y is

ProjW (y) =
y · v1

v1 · v1
v1 +

y · v2

v2 · v2
v2 =









6
7

−2









·









1
2
3

















1
2
3









·









1
2
3













1
2
3



+









6
7

−2









·









−1
5
3

















−1
5
3









·









−1
5
3













−1
5

−3





=
6 + 14− 6

12 + 22 + 32





1
2
3



+
−6 + 35 + 6

(−1)2 + 52 + (−3)2





−1
5

−3



 =





1
2
3



+





−1
5

−3



 =





0
7
0



 .

So the distance from y to W is ‖y − ProjW (y)‖ =

∥
∥
∥
∥
∥
∥





6
7

−2



−





0
7
0





∥
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
∥





6
0

−2





∥
∥
∥
∥
∥
∥

=
√
40.
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Theorem 8: Orthogonal Decomposition Theorem: Let W be a subspace of Rn.
Then every y in R

n can be written uniquely as y = ŷ + z with ŷ in W and z in W⊥.
In fact, if {v1, . . . ,vp} is any orthogonal basis for W , then

ŷ = ProjW (y) =
y · v1

v1 · v1
v1 + · · ·+ y · vp

vp · vp

vp and z = y − ŷ.

The Best Approximation Theorem tells us that ŷ and z are unique, but here is an
alternative proof that does not use the distance between ŷ and y.

Suppose y = ŷ + z and y = ŷ1 + z1 are two such decompositions, so ŷ, ŷ1 are in W ,
and z, z1 are in W⊥, and

ŷ + z = ŷ1 + z1

ŷ − ŷ1 = z1 − z.

LHS: Because ŷ, ŷ1 are in W and W is a subspace, the difference ŷ − ŷ1 is in W .
RHS: Because z, z1 are in W⊥ and W⊥ is a subspace, the difference z1 − z is in W⊥.
So the vector ŷ − ŷ1 = z1 − z is in both W and W⊥, this vector is the zero vector
(property 1 on week 11, p10). So ŷ = ŷ1 and z1 = z.
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Theorem 8: Orthogonal Decomposition Theorem: Let W be a subspace of Rn.
Then every y in R

n can be written uniquely as y = ŷ + z with ŷ in W and z in W⊥.
In fact, if {v1, . . . ,vp} is any orthogonal basis for W , then

ŷ = ProjW (y) =
y · v1

v1 · v1
v1 + · · ·+ y · vp

vp · vp

vp and z = y − ŷ.

The formula for ProjW (y) above is similar to the Weights for Orthogonal Bases
Theorem (p5). Let’s look at how they are related.

For a vector y in W , the Weights for Orthogonal Bases Theorem says that
y =

y · v1

v1 · v1

v1 + · · ·+ y · vp

vp · vp

vp = ProjW (y). This makes sense because, if y is

already in W , then the closest point in W to y must be y itself.

If y is not in W , then suppose {v1, . . . ,vp} is part of a larger orthogonal basis
{v1, . . . ,vp,vp+1, . . . ,vn} for Rn. So the Weights for Orthogonal Bases Theorem

says that y =
y · v1

v1 · v1
v1 + · · ·+ y · vp

vp · vp

vp

︸ ︷︷ ︸

Proj
W

y

+
y · vp+1

vp+1 · vp+1
vp+1 + · · ·+ y · vn

vn · vn

vn

︸ ︷︷ ︸
z

.
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y =





5
2
4





ŷ =





5
2
0





W

z = y − ŷ

So, informally, the orthogonal
projection “changes the coordinates
outside W to 0”.

If an orthogonal basis {v1, . . . ,vp} for W is part of a larger orthogonal basis
{v1, . . . ,vp,vp+1, . . . ,vn} for Rn, then

y =
y · v1

v1 · v1
v1 + · · ·+ y · vp

vp · vp

vp

︸ ︷︷ ︸

Proj
W

y

+
y · vp+1

vp+1 · vp+1
vp+1 + · · ·+ y · vn

vn · vn

vn

︸ ︷︷ ︸
z

.

Example: Consider the orthonormal basis {e1, e2, e3} for R3. Let

W = Span {e1, e2}, and y =





5
2
4



 = 5 e1 + 2e2
︸ ︷︷ ︸

Proj
W

y

+ 4e3
︸︷︷︸
z

.

So ProjW (y) =





5
2
0



, as we saw week 11 p15.



If an orthogonal basis {v1, . . . ,vp} for W is part of a larger orthogonal basis
{v1, . . . ,vp,vp+1, . . . ,vn} for Rn, then

y =
y · v1

v1 · v1

v1 + · · ·+
y · vp

vp · vp

vp︸ ︷︷ ︸
ProjWy

+
y · vp+1

vp+1 · vp+1

vp+1 + · · ·+
y · vn

vn · vn

vn︸ ︷︷ ︸
z

.

What is z?

a) {vp+1, . . . ,vn} is an orthogonal set because

b) {vp+1, . . . ,vn} is linearly independent because

c) {vp+1, . . . ,vn} is in W⊥ because

d) {vp+1, . . . ,vn} is a basis for W⊥ because

So {vp+1, . . . ,vn} is an orthogonal basis for W⊥, and so

z =
y · vp+1

vp+1 · vp+1

vp+1 + · · ·+
y · vn

vn · vn

vn = ProjW⊥y.

Another way to phrase this:

y = ProjWy + ProjW⊥y.

In other words, ProjWy = y − ProjW⊥y, and this is sometimes useful in
computations, e.g. if you already have an orthogonal basis for W⊥ but not for
W , then ProjW⊥y is easier to find than ProjWy (see Homework 6 Q3).



Let W be a subspace of Rn. If {u1, . . . ,up} is an orthonormal basis for W ,
then, for every y in Rn,

projWy = (y · u1)u1 + · · ·+ (y · up)up.

Thinking about projW : Rn → Rn as a function:

We saw a special case in Week 4 §1.8-1.9:

Projection onto thex1-axis

   


0
0

   


1
0

x1

x2
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Properties of projW : Rn → R
n from the picture (exercise: prove them algebraically):

a. projW is a linear transformation (ex. sheet #25 Q1a).
b. projW (y) = y if and only if y is in W .
c. The range of projW is W .
d. The kernel of projW is W⊥ (ex. sheet #25 Q1b).
e. proj2W = projW (ex. sheet #25 Q1c).
f. projW + projW⊥ is the identity transformation (p16).

Non-examinable: instead of using the formula for projW , we can prove these properties
from the existence and uniqueness of the orthogonal decomposition, e.g. for a: if we have
orthogonal decompositions y1 = projW (y1) + z1 and y2 = projW (y2) + z2, then

cy1 + dy2 = c(projW (y1) + z1) + d(projW (y2) + z2)

= cprojW (y1) + dprojW (y2)
︸ ︷︷ ︸

in W

+ cz1 + dz2
︸ ︷︷ ︸

in W⊥

Since the orthogonal decomposition is unique, this shows
projW (cy1 + dy2) = cprojW (y1) + dprojW (y2).
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The orthogonal projection is a linear transformation, so we can ask for its standard
matrix. (It is faster to compute orthogonal projections by taking dot products (formula
on p11) than using the standard matrix, but this result is useful theoretically.)
Theorem 10: Matrix for Orthogonal Projection: Let {u1, . . . ,up} be an

orthonormal basis for a subspace W , and U be the matrix U =





| | |
u1 . . . up

| | |



.

Then the standard matrix for projW is [projW ]
E
= UUT .

Proof:

UUTy =





| | |
u1 . . . up

| | |










−− u1 −−
−−

... −−
−− up −−




y =





| | |
u1 . . . up

| | |










u1 · y
...

up · y






= (u1 · y)u1 + · · ·+ (up · y)up.

Tip: to remember that [projW ]
E
= UUT and not UTU (which is important too, see

p23), make sure this matrix is n× n.
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This is an algorithm to make an orthogonal basis out of an arbitrary basis.

Example: Let x1 =





4
2
0



 ,x2 =





2
1
3



 and let W = Span {x1,x2}.

Construct an orthogonal basis {v1,v2} for W .

Answer: Let v1 = x1 =





4
2
0



, and let W1 = Span {v1}.

By the Orthogonal Decomposition Theorem,
x2 − projW1

(x2) is orthogonal to W1.
So let

§6.4: The Gram-Schmidt Process

v2 = x2 − projW1
(x2) = x2 −

x2 · v1

v1 · v1
v1

=





2
1
3



− 8 + 2 + 0

42 + 22 + 0





4
2
0



 =





0
0
3



 .
projW1

(x2)



EXAMPLE Let x1 =

3
0
-1
0

,x2 =

8
5
-6
0

, x3 =

-6
7
2
1

subspace W of R4. Construct an orthogonal basis for W. 
Solution:

v1 = x1 =

3
0
-1
0

v2 =  x2 − Proj W1 
=

8
5
-6
0

−

3
0
-1
0

=

For subspaces of dimension p>2 , we repeat this idea  p times, like this: 

, W1 = Span{v1}.

x2  = 

Check our answer so far:

(    )

, and suppose x1,x2,x3  

v3 =  x3

=

-6
7
2
1

−

3
0
-1
0

+

-1
5
-3
0

=

Let   W   2   = Span                        v1,v2

−  Proj W2 x(    )3  = 

is a basis for a 

Check our answer:
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projW2
(x3)

In general:
Theorem 11: Gram-Schmidt: Given a basis {x1, . . . ,xp} for a subspace W of
R

n, define v1 = x1

v2 = x2 −
x2 · v1

v1 · v1
v1

v3 = x3 −
(
x3 · v1

v1 · v1
v1 +

x3 · v2

v2 · v2
v2

)

...

vp = xp −
(
xp · v1

v1 · v1
v1 + · · ·+ xp · vp−1

vp−1 · vp−1
vp−1

)

Then {v1, . . . ,vp} is an orthogonal basis for W , and
Span {v1, . . . ,vk} = Span {x1, . . . ,xk} for each k between 1 and p.

In fact, you can apply this algorithm to any spanning set (not necessarily linearly
independent). Then some vks might be zero, and you simply remove them.
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pp361-362: Matrices with orthonormal columns
This is an important class of matrices.

Theorem 6: Matrices with Orthonormal Columns: A matrix U has
orthonormal columns (i.e. the columns of U are an orthonormal set) if and only if
UTU = I.

Proof: Let ui denote the ith column of U . From the row-column rule of matrix
multiplication (week 11 p14):






−− u1 −−
−−

... −−
−− up −−










| | |
u1 . . . up

| | |



 =






u1 · u1 . . . u1 · up

...
...

up · u1 . . . up · up




 .

so UTU = I if and only if ui · ui = 1 for each i (diagonal entries), and
ui · uj = 0 for each pair i 6= j (non-diagonal entries).
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Theorem 7: Matrices with Orthonormal Columns represent Length-

Preserving Linear Transformations: Let U be an m× n matrix with
orthonormal columns. Then, for any x,y ∈ R

n,

(Ux) · (Uy) = x · y.

In particular, ‖Ux‖ = ‖x‖ for all x, and (Ux) · (Uy) = 0 if and only if x · y = 0.

Proof:
(Ux) · (Uy) = (Ux)T (Uy) = xTUTUy = xTy = x · y.

because UTU = In, by
the previous theorem

Length-preserving linear transformations are sometimes called isometries.
Exercise: prove that an isometry also preserves angles; that is, if A is any matrix
such that ‖Ax‖ = ‖x‖ for all x, then (Ax) · (Ay) = x · y for all x,y. (Hint:
think about x+ y.)
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An important special case:
Definition: A matrix U is orthogonal if it is a square matrix with orthonormal
columns. Equivalently, U−1 = UT .

Warning: An orthogonal matrix has orthonormal columns, not simply orthogonal
columns.

Example: The standard matrix of a rotation in R
2 is U =

[
cos θ − sin θ
sin θ cos θ

]

, and this

is an orthogonal matrix because

UTU =

[
cos θ sin θ

− sin θ cos θ

] [
cos θ − sin θ
sin θ cos θ

]

=

[
cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

]

=

[
1 0
0 1

]

.

It can be shown that every orthogonal 2× 2 matrix U represents either a rotation
(if detU = 1) or a reflection (if detU = −1). (Exercise: why are these the only
possible values of detU?) An orthogonal n× n matrix with determinant 1 is a
high-dimensional generalisation of a rotation.
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Recall (week 9 p7, §4.4) that, if B = {u1, . . . ,un} is a basis for Rn, then the
change-of-coordinates matrix from B-coordinates to standard coordinates is

P
E←B

=





| | |
u1 . . . un

| | |



 .

So an orthogonal matrix can also be viewed as a change-of-coordinates matrix from
an orthonormal basis to the standard basis.

1 · 1 · · · n · n

Question: Given x, how can we find [x]B?

Answer 1:

[x]B = P
B←E

x = P
E←B

−1x = U−1x = UTx =






−− u1 −−
−−

... −−
−− un −−




x =






u1 · x
...

un · x




 .

Answer 2: By the Weights for Orthogonal Bases Theorem,
x = (x · u1)u1 + · · ·+ (x · un)un, so, by the definition of coordinates,
[x]B = (x · u1, . . . ,x · un).
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Non-examinable: distances for abstract vector spaces
On an abstract vector space, a function that takes two vectors to a scalar
satisfying the symmetry, linearity and positivity properties (week 11 p5) is called
an inner product. The inner product of u and v is often written 〈u,v〉 or 〈u|v〉.
(So the dot product is one example of an inner product on R

n, but other useful
inner products exist; these can be used to compute weighted regression lines, see
§6.8 of the textbook)

Many common inner products on C([0, 1]), the vector space of continuous
functions, have the form

〈f ,g〉 =
∫ 1

0

f(t)g(t)w(t) dt

for some non-negative weight function w(t). Orthogonal projections using these
inner products compute polynomial approximations and Fourier approximations to
functions, see §6.7-6.8 of the textbook.

Applying Gram-Schmidt to
{
1, t, t2, . . .

}
produces various families of orthogonal

polynomials, which is a big field of study.
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With the concept of inner product, we can understand what the transpose means
for linear transformations:

First notice: if A is an m× n matrix, then, for all v in R
n and all u in R

m:

(ATu) · v
︸ ︷︷ ︸

dot product in Rn

= (ATu)Tv = uTAv = u · (Av)
︸ ︷︷ ︸

dot product in Rm

.

So, if A is the standard matrix of a linear transformation T : Rn → R
m, then AT

is the standard matrix of its adjoint T ∗ : Rm → R
n , which satisfies

(T ∗u) · v = u · (Tv).
or, for abstract vector space with an inner product:

〈T ∗u,v〉 = 〈u, Tv〉.

So symmetric matrices (AT = A) represent self-adjoint linear transformations
(T ∗ = T ). For example, on C([0, 1]) with any integral inner product, the
multiplication-by-x function f 7→ xf is self-adjoint.
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§7.1: Diagonalisation of Symmetric Matrices
Symmetric matrices (A = AT ) arise naturally in many contexts, when aij depends
on i and j but not on their order (e.g. the friendship matrix from Homework 3
Q7, the Hessian matrix of second partial derivatives from Multivariate Calculus).
The goal of this section is to observe some very nice properties about the
eigenvectors of a symmetric matrix.

Example: A =

[
3 2
2 0

]
is a symmetric matrix.

[
3 2
2 0

] [−1
2

]
= −1

[−1
2

]
, so

[−1
2

]
is a −1-eigenvector.

[
3 2
2 0

] [
2
1

]
= 4

[
2
1

]
, so

[
2
1

]
is a 4-eigenvector.

Notice that the eigenvectors are orthogonal:

[−1
2

]
·
[
2
1

]
= 0. This is not a

coincidence...
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Theorem 1: Eigenvectors of Symmetric Matrices: If A is a symmetric matrix,
then eigenvectors corresponding to distinct eigenvalues are orthogonal.
Compare: for an arbitrary matrix, eigenvectors corresponding to distinct
eigenvalues are linearly independent (week 10 p22).

Proof: Suppose v1 and v2 are eigenvectors corresponding to distinct eigenvalues
λ1 and λ2. Then

(Av1) · v2 = (λ1v1) · v2 = λ1(v1 · v2),

v1 · (Av2) = v1 · (λ2v2) = λ2(v1 · v2).

But the two left hand sides above are equal, because (see also week 12 p28)

(Av1) · v2 = (Av1)
Tv2 = vT

1 A
Tv2 = vT

1 Av2 = v1 · (Av2).

So the two right hand sides are equal: λ1(v1 · v2) = λ2(v1 · v2). Since λ1 �= λ2,
it must be that v1 · v2 = 0.

and

A is symmetric
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Remember from week 10 §5:
Definition: A square matrix A is diagonalisable if there is an invertible matrix P and
a diagonal matrix D such that A = PDP−1.
Diagonalisation Theorem: An n× n matrix A is diagonalisable if and only if A has
n linearly independent eigenvectors. Those eigenvectors are the columns of P .

Given our previous observation, we are interested in when a matrix has n orthogonal
eigenvectors. Because any scalar multiple of an eigenvector is also an eigenvector,
this is the same as asking, when does a matrix have n orthonormal eigenvectors, i.e.
when is the matrix P in the Diagonalisation Theorem an orthogonal matrix?
Definition: A square matrix A is orthogonally diagonalisable if there is an
orthogonal matrix P and a diagonal matrix D such that A = PDP−1, or
equivalently, A = PDPT .

We can extend the previous theorem (being careful about eigenvectors with the same
eigenvalue) to show that any diagonalisable symmetric matrix is orthogonally
diagonalisable, see the example on the next page.



HKBU Math 2207 Linear Algebra Summer 2018 edition, Week 13, Page 4 of 9

Example: Orthogonally diagonalise B =

⎡
⎣

4 −1 −1
−1 4 −1
−1 −1 4

⎤
⎦,

Answer:
Step 1 Solve the characteristic equation det(B − λI) = 0 to find the eigenvalues.

Eigenvalues are 2 and 5.
Step 2 For each eigenvalue λ, solve (B−λI)x = 0 to find a basis for the λ-eigenspace.

This gives

⎧⎨
⎩

⎡
⎣
1
1
1

⎤
⎦
⎫⎬
⎭ as a basis for the 2-eigenspace, and

⎧⎨
⎩

⎡
⎣
−1
1
0

⎤
⎦,
⎡
⎣
−1
0
1

⎤
⎦
⎫⎬
⎭ as a basis for

the 5-eigenspace. Notice the 2-eigenvector is orthogonal to both the 5-eigenvectors,
but the two 5-eigenvectors are not orthogonal.

Step 2A For each eigenspace of dimension > 1, find an orthogonal basis (e.g. by
Gram-Schmidt) Applying Gram-Schmidt to the above basis for the 5-eigenspace

gives

⎧⎨
⎩

⎡
⎣
−1
1
0

⎤
⎦,
⎡
⎣
−1/2
−1/2

1

⎤
⎦
⎫⎬
⎭. To avoid fractions, let’s use

⎧⎨
⎩

⎡
⎣
−1
1
0

⎤
⎦,
⎡
⎣
−1
−1
2

⎤
⎦
⎫⎬
⎭, which is still

an orthogonal set.

i.e. find an orthogonal P
and diagonal D with
B = PDP−1:
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Step 2B Normalise all the eigenvectors⎧⎨
⎩

⎡
⎣
1/

√
3

1/
√
3

1/
√
3

⎤
⎦
⎫⎬
⎭ is an orthonormal basis for the 2-eigenspace, and

⎧⎨
⎩

⎡
⎣
−1/

√
2

1/
√
2
0

⎤
⎦,
⎡
⎣
−1/

√
6

−1/
√
6

2/
√
6

⎤
⎦
⎫⎬
⎭

is an orthonormal basis for the 5-eigenspace.
Step 3 Put the normalised eigenvectors from Step 2B as the columns of P .
Step 4 Put the corresponding eigenvalues as the diagonal entries of D.

P =

⎡
⎣
1/

√
3 −1/

√
2 −1/

√
6

1/
√
3 1/

√
2 −1/

√
6

1/
√
3 0 2/

√
6

⎤
⎦ , D =

⎡
⎣
2 0 0
0 5 0
0 0 5

⎤
⎦ .

Check our answer:

PDPT=

⎡
⎣
1/
√
3 −1/

√
2 −1/

√
6

1/
√
3 1/

√
2 −1/

√
6

1/
√
3 0 2/

√
6

⎤
⎦
⎡
⎣
2 0 0
0 5 0
0 0 5

⎤
⎦
⎡
⎣

1/
√
3 1/

√
3 1/

√
3

−1/
√
2 1/

√
2 0

−1/
√
6 −1/

√
6 2/

√
6

⎤
⎦=

⎡
⎣

4 −1 −1
−1 4 −1
−1 −1 4

⎤
⎦.



A geometric illustration of "orthonormalising" the eigenvectors:
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This algorithm shows that any diagonalisable symmetric matrix is orthogonally
diagonalisable.
Amazingly, every symmetric matrix is diagonalisable:
Theorem 3: Spectral Theorem for Symmetric Matrices: A symmetric matrix
is orthogonally diagonalisable, i.e. it has a orthonormal basis of eigenvectors.
(The name of the theorem is because the set of eigenvalues and multiplicities of a
matrix is called its spectrum. There are spectral theorems for many types of linear
transformations.)

P is orthogonal D is diagonal

The reverse direction is also true, and easy:
Theorem 2: Orthogonally diagonalisable matrices are symmetric: If
A = PDP−1 and P is orthogonal and D is diagonal, then A is symmetric.
Proof:

AT = (PDP−1)T = (PDPT )T = (PT )TDTPT = PDPT = A.
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A diagram to summarise what we know about diagonalisation:

Matrices with n
distinct eigenvalues

Diagonalisable matrices: has n linearly
independent eigenvectors

Symmetric
matrices: has n
orthogonal
eigenvectors

SymmetricSymmetric
matrices: hasmatrices: has nn
orthogonalorthogonal
eigenvectorseigenvectors
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Non-examinable: ideas behind the proof of the spectral theorem
Because we need to work on subspaces of Rn in the proof, we consider self-adjoint
linear transformations ((Tu) · v = u · (Tv)) instead of symmetric matrices. So we want
to show: a self-adjoint linear transformation has an orthogonal basis of eigenvectors.
The key ideas are:
1. Every linear transformation (on any vector space) has a complex eigenvector.

Proof: Every polynomial has a solution if we allow complex numbers. Apply this to
the characteristic polynomial.

2. Any complex eigenvector of a (real) self-adjoint linear transformation is a real
eigenvector corresponding to a real eigenvalue. (We won’t comment on the proof.)

3. Let v be an eigenvector of a self-adjoint linear transformation T , and w be any
vector orthogonal to v. Then T (w) is still orthogonal to v.
Proof: v · (T (w)) = (T (v)) ·w = λv ·w = λ0 = 0.

Putting these together: if T : Rn → R
n is self-adjoint, then by 1 and 2 it has a real

eigenvector v. Let W = (Span {v})⊥, the subspace of vectors orthogonal to v. By 3,
any vector in W stays in W after applying T (i.e. W is an invariant subspace under T ),
so we can consider the restriction T : W → W , which is self-adjoint. So repeat this
argument on W (i.e. use induction on the dimension of the domain of T ).




